This paper presents some results on a well-known problem in Algebraic SignalSampling and in other areas of applied mathematics: reconstruction ofpiecewise-smooth functions from their integral measurements (like moments,Fourier coefficients, Radon transform, etc.). Our results concernreconstruction (from the moments or Fourier coefficients) of signals in twospecific classes: linear combinations of shifts of a given function, and"piecewise $D$-finite functions" which satisfy on each continuity interval alinear differential equation with polynomial coefficients. In each case theproblem is reduced to a solution of a certain type of non-linear algebraicsystem of equations ("Prony-type system"). We recall some known methods forexplicitly solving such systems in one variable, and provide extensions to somemulti-dimensional cases. Finally, we investigate the local stability of solvingthe Prony-type systems.
展开▼
机译:本文介绍了代数信号采样和其他应用数学领域中一个众所周知的问题的一些结果:根据积分测量(如矩,傅立叶系数,Radon变换等)重构逐段平滑函数。我们的结果涉及两种特定类别的信号的重构(从力矩或傅立叶系数开始):给定函数的位移的线性组合,以及在每个连续区间上满足具有多项式系数的线性微分方程的“分段$ D $-有限函数”。在每种情况下,问题都简化为某种类型的非线性代数方程组(“ Prony型系统”)的解决方案。我们回顾了一些已知的方法,可以在一个变量中明确求解此类系统,并提供了对某些多维情况的扩展。最后,我们研究了求解Prony型系统的局部稳定性。
展开▼