首页> 外文OA文献 >Charge noise and spin noise in a semiconductor quantum device
【2h】

Charge noise and spin noise in a semiconductor quantum device

机译:半导体量子器件中的电荷噪声和自旋噪声

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Self-assembled quantum dots are very attractive as the building blocks for quantum light sources and udspin qubits. For instance, a single quantum dot is a robust, fast, narrow-linewidth source of single udphotons, features not shared by any other emitter. A spin qubit is implemented by a single electron udor hole confined to a quantum dot. Fundamental quantum mechanics have been explored in udexperiments with single quantum dots and spectacular success has been achieved. Future uddevelopments however demand an enhanced quantum coherence. For instance, indistinguishable udsingle photons and coherent spins are required to implement a quantum repeater. For quantum-dot-udbased single photon sources, the linewidths are in the best case typically a factor of two larger than udthe transform limit in which the linewidth is determined only by the radiative decay time. Photons udgenerated far apart in the time domain are therefore not indistinguishable. Spin coherence is udpresently limited to microsecond timescales. Improving the quantum coherence involves dealing udwith the noise inherent to the device. Charge noise results in a fluctuating electric field, spin noise in uda fluctuating magnetic field at the location of the qubit, and both can lead to dephasing and uddecoherence of optical and spin states. Here, the noise and strategies to circumvent its deleterious udeffects are explored in order to optimize the performance of solid-state quantum systems. udThis thesis is divided into five parts. The first chapter describes in detail the main experimental tool udto explore noise in the solid-state: resonance fluorescence from single quantum dots. A polarization-udbased dark-field microscope is realized allowing background-free resonance fluorescence detection udwhile operating in a set-and-forget mode. udChapter 2 investigates charge fluctuations in a semiconductor. The origin of the main source of udcharge noise in the commonly used optical field-effect devices is pinned down: charge fluctuations at uda GaAs/AlAs interface nearby the quantum dots. These defects are moved further away from the udquantum dots in an improved sample design resulting in close-to-transform limited optical udlinewidths. udEven with the improved heterostructures, the transform limit is not reached. Noise spectra of both udcharge noise and spin noise provide powerful insights into the noise inherent to the semiconductor, uddiscussed in chapter 3. A time trace of the resonance fluorescence from a single quantum dot is udtranslated into a noise spectrum. A crucial difference in their optical signatures allows the nature of udthe noise, charge or spin, to be identified. The charge noise is centred at low frequencies, the spin udnoise is centred at high frequencies. This technique is able to reveal the entire spectrum of the spin udnoise. The combined noise falls rapidly with frequency becoming insignificant above 50 kHz for the udquantum dot optical transition as signalled by transform-limited linewidths. udThe low frequency noise, charge noise, results in considerable noise in the emission frequency of the udsingle photons. This problem is solved in chapter 4 with a dynamic feedback technique that locks the udquantum emission frequency to a reference. The charge noise and its deleterious effects are highly udreduced. A frequency-stabilized source of single photons in the solid-state is realized. udThe low frequency linewidths are in the best case typically a factor of two larger than the transform udlimit. It is shown in chapter 5 that spin noise in the host material is the dominant exciton dephasing udmechanism. This applies to both the neutral and charged excitons. For the neutral exciton, the spin udnoise increases with increasing excitation power. Conversely for the charged exciton, spin noise uddecreases with increasing excita­tion power. This effect is exploited to demonstrate transform-udlimited linewidths for the charged exciton even when the measurement is performed very slowly. ud
机译:自组装量子点作为量子光源和 udspin量子位的构建块非常有吸引力。例如,单个量子点是单个 udphoton的健壮,快速,窄线宽源,其他任何发射器均不共享这些特征。自旋量子位由限制在量子点中的单个电子空穴实现。在单量子点的实验中已经研究了基本量子力学,并取得了惊人的成功。但是,未来的发展要求增强量子相干性。例如,实现量子中继器需要不可分辨的 udinging单光子和相干自旋。对于基于量子点的单光子源,在最佳情况下,线宽通常比变换极限大2倍,在变换极限中,线宽仅由辐射衰减时间确定。因此,在时域中相隔很远的光子是不可区分的。自旋相干目前限制在微秒级。改善量子相干性涉及处理设备固有的噪声。电荷噪声导致波动的电场,量子位所处的磁场中的自旋噪声会发生波动,并且两者都可能导致光学和自旋态的相移和不相干。在这里,为了优化固态量子系统的性能,研究了噪声和规避其有害影响的策略。 ud本论文分为五个部分。第一章详细介绍了研究固态噪声的主要实验工具 ud:来自单个量子点的共振荧光。实现了基于偏振 ud的暗场显微镜,从而允许在设置后遗忘模式下进行无背景共振荧光检测。 第2章研究半导体中的电荷波动。常用光学场效应器件中 udcharge噪声的主要来源的来源是固定的:在量子点附近的 uda GaAs / AlAs界面处的电荷波动。在改进的样本设计中,这些缺陷会进一步远离 udquantum点,从而导致接近转换的有限光学 udlinewidths。 ud即使使用改进的异质结构,也无法达到变换极限。电荷噪声和自旋噪声的噪声谱为深入了解半导体固有噪声提供了有力的见解,已在第3章中进行了讨论。来自单个量子点的共振荧光的时间轨迹被超声转换为噪声谱。它们光学特征的关键区别在于可以识别噪声,电荷或自旋的性质。电荷噪声以低频为中心,自旋噪声以高频为中心。该技术能够揭示自旋噪声的整个频谱。对于数字量子点光学跃迁,组合噪声迅速下降,在50 kHz以上的频率变得微不足道,这是通过变换限制的线宽来表示的。低频噪声,电荷噪声会在双光子的发射频率中产生相当大的噪声。在第4章中,使用动态反馈技术解决了这个问题,该技术将 udquantum发射频率锁定为参考。电荷噪声及其有害影响已大大降低。实现了固态中单光子的频率稳定源。 ud在最佳情况下,低频线宽通常比变换 udlimit大两倍。在第5章中表明,主体材料中的自旋噪声是移相 ud机制的主要激子。这适用于中性和带电的激子。对于中性激子,自旋噪声随激励功率的增加而增加。相反,对于带电的激子,自旋噪声随激磁功率的增加而降低。利用这种效应可以证明带电激子的变换/非限定线宽,即使测量非常缓慢也是如此。 ud

著录项

  • 作者

    Kuhlmann Andreas V.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号