首页> 外文OA文献 >An interpolation-based fast multipole method for higher order boundary elements on parametric surfaces
【2h】

An interpolation-based fast multipole method for higher order boundary elements on parametric surfaces

机译:基于插值的参数曲面上高阶边界元的几乎多极方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article, a black-box higher order fast multipole method for solving boundary integral equations on parametric surfaces in three spatial dimensions is proposed. Such piecewise smooth surfaces are the topic of recent studies in isogeometric analysis. Due to the exact surface representation, the rate of convergence of higher order methods is not limited by approximation errors of the surface. An element-wise clustering strategy yields a balanced cluster tree and an efficient numerical integration scheme for the underlying Galerkin method. By performing the interpolation for the fast multipole method directly on the reference domain, the cost complexity in the polynomial degree is reduced by one order. This gain is independent of the application of either (mathcal{H})- or (mathcal{H}^2)-matrices. In fact, several simplifications in the construction of (mathcal{H}^2)-matrices are pointed out, which are a by-product of the surface representation. Extensive numerical examples are provided in order to quantify and qualify the proposed method. In this article, a black-box higher order fast multipole method for solving boundary integral equations on parametric surfaces in three spatial dimensions is proposed. Such piecewise smooth surfaces are the topic of recent studies in isogeometric analysis. Due to the exact surface representation, the rate of convergence of higher order methods is not limited by approximation errors of the surface. An element-wise clustering strategy yields a balanced cluster tree and an efficient numerical integration scheme for the underlying Galerkin method. By performing the interpolation for the fast multipole method directly on the reference domain, the cost complexity in the polynomial degree is reducedby one order. This gain is independent of the application of either H - or H 2- matrices. In fact, several simplificationsin the construction of  H 2 -matrices are pointed out, which are a by-product of the surface representation. Extensive numerical examples are provided in order to quantify and qualify the proposed method.
机译:本文提出了一种黑盒高阶快速多极方法,用于求解三维空间参数曲面上的边界积分方程。这种分段光滑的表面是等几何分析中最新研究的主题。由于精确的表面表示,高阶方法的收敛速度不受表面近似误差的限制。基于元素的聚类策略为基础的Galerkin方法产生了平衡的聚类树和有效的数值积分方案。通过直接在参考域上执行快速多极方法的插值,多项式的成本复杂度降低了一个数量级。此增益与(mathcal {H})或(mathcal {H} ^ 2)矩阵的应用无关。实际上,指出了(mathcal {H} ^ 2)矩阵构造的几种简化,这是表面表示的副产品。提供大量的数值示例,以量化和验证所提出的方法。本文提出了一种黑盒高阶快速多极子方法,用于求解三维空间参数曲面上的边界积分方程。这种分段光滑的表面是等几何分析中最新研究的主题。由于精确的表面表示,高阶方法的收敛速度不受表面近似误差的限制。基于元素的聚类策略为基础的Galerkin方法产生了平衡的聚类树和高效的数值积分方案。通过直接在参考域上执行快速多极方法的插值,多项式的成本复杂度降低了一个数量级。该增益与H-或H 2-矩阵的应用无关。实际上,指出了H 2矩阵构造的一些简化,这是表面表示的副产品。提供了大量的数值示例以量化和验证所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号