首页> 外文OA文献 >Transport measurements of single wall carbon nanotube multiterminal devices with normal and ferromagnetic contacts
【2h】

Transport measurements of single wall carbon nanotube multiterminal devices with normal and ferromagnetic contacts

机译:具有正常和铁磁接触的单壁碳纳米管多端器件的传输测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spin based electronics or spintronics is a field having the electron's spinuddegree of freedom as a subject. It is about how to write, transfer and readudinformation using the electron spin. The birth of spintronics is consideredudto be the discovery of the giant magnetoresistance (GMR) in 1988 [1] andudsince then a major progress has been achieved in the field [2, 3]. The bestudexample of this progress is the development of so called spin-valves. Modernudday spin-valves are based on the GMR and they are used for measuring smalludmagnetic fields. Their most common application is as sensors in hard diskudreading heads.udSpintronics can conceptually be divided in two parts. The first one isudabout generating and detecting spin polarized electrons, which is normallyuddone using ferromagnetic materials, but can also be done using optical methodsud[3]. The latter part is about coherent transfer of spin information. Itudis of fundamental importance to understand how spin infomation can beudtransfered coherently over larger distances.udIn recent years new nanoscale allotropes of carbon have been discovered.udIn 1985 the first fullerene, the buckyball was discovered [4] and 1991 carbonudnanotubes (CNT) were discovered by Sumio Iijima [5]. CNTs behave as onedimensionaludconductors and the coherence length of the electron in them isudvery long, especially in individual SWCNT, where the electrons have beenudfound to be coherent over the distance of 3 �m [6]. Moreover, carbon is believedudto have long spin coherence length, due to low spin orbit coupling andudno nuclear spin of its main isotope 12C . This all makes CNTs an interestingudplatform for spin transport studies.udThe first work on CNT spin-valve devices was done on multiwall carbonudnanotubes (MWCNTs) contacted by Co electrodes [7]. By applying magneticudfield to the device the magnetization of the Co electrodes can be changed betweenudparallel and antiparallel mutual orientation. The resistance for parallelududand antiparallel mutual orientation, RP and RA respectively, are measuredudand the TMR, which is defined as followsudTMR = (RA - RP)/udis calculated. The TMR of this first CNT spin-valve was 9% at maximumudand it was positive (i.e RA > RP ) [7, 8].udNegative TMR signal was later measured in similar devices, i.e. MWCNTsudcontacted with Co electrodes. The maximal size of the TMR signal in theseuddevices was 36% for a low current bias, but higher current bias resulted inudlower TMR signals [9]. The origin of the di�erent sign of the TMR was notudclear by then.udThe first CNT spin devices fabricated in our lab wereMWCNTs contactedudby Pd1-xNix (x ~ 0:7) 1. These ferromagnetic contacts were transparent,udhaving room temperature resistance of 5:6 k[omega]. What was new about theseuddevices was that they were equipped with a back gate and could be tunedudbetween di�erent transport regimes [10]. More importantly it was shown thatudTMR was dependent on the back gate voltage [11]. Further studies revealedudthat the TMR signal was either negative or positive dependent on appliedudgate voltage, but the origin of this behavior was not well understood [12].udWhen the signal changes in TMR were studied single wall carbon nanotubesud(SWCNT) grown in-house by chemical vapor deposition (CVD) usingudmethane as a carbon source became available. The CVD growing processudhad been optimize to produce individual SWCNT [13]. Individual CVDudgrown SWCNTs were connected with PdNi contacts. In such device it wasudshown that the TMR signal was correlated with the coulomb oscillations ofudthe quantum dot which is formed in the SWCNT between the contacts. InudSWCNT the quantum dot behavior is much simpler than in MWCNT andudthe TMR could be tuned smoothly from positive to negative values by theudgate voltage [12, 14]. This work demonstrated for the first time the controludof spin transport in a three terminal device.udThere are still many open questions concerning SWCNT spin devices.udThere are mainly two issues that one should be concerned about when constructinguda SWCNT spin valve device. The first one is the switching characteristicsudof the electrodes. The switching in the devices contacted with PdNiudcontacts is not always clear indicating that the electrode consists of manyudmagnetic domains.udThe latter one is due to spurious effects in the SWCNT spin-valves. Suchudeffects could be magneto-coulomb effect [15] or tunnelling anisotropic magnetoresistanceud(TAMR). Spurious effects could cause a "false TMR signal",ududi.e. a switching behavior in the signal as a function of applied field that thatuddoes not originate from transport of spin.udThe focus of the this work was mainly to address these issues but someudwork was also done on how to process of individual SWCNT devices. PdNiudelectrodes were studied in order to understand their switching behavior better.udWe worked to optimize the switching characteristics of the spin-valveuddevices, by trying other contact materials on the SWCNTs.udOne way of avoiding spurious e�ects is to make multi-terminal devices.udIt has been shown in metallic nanostructures that by measuring non-localudspin signals, artefacts can be avoided. Non-local spin transport measurementsudhave been done on SWCNT contacted by four Co contacts [16]. Theudmultiterminal devices made in this work have two normal contacts and twoudferromagnetic contacts. They are gateable with a back-gate enabling it toudstudy the behavior of the three quantum dots that are formed in each segmentudof the tube between the contacts.udOutline of this thesisud- Chapter 2 is on the basics of spintronics. It includes a short descriptionudon ferromagnetism and on anisotropic magnetoresistance (AMR)udand for historical resons giant magnetoresistance (GMR) is briefly discussed.udThe tunnelling magnetoresistance is explained and Julliére'sudmodel.ud- Chapter 3 is on carbon nanotubes. It is focused on single wall carbonudnanotubes (SWCNT), their structure and their electronic properties.ud- Chapter 4 is on processing of SWCNT devices. The first part of theudchapter is on SWCNT production and characterization of the SWCNTudmaterial. A lot of time was invested in the lab in finding the best wayudto obtain individual SWCNT for our nanotube project. Both mainudapproaches tested, i.e spreading tubes from suspension solution andudCVD growth are described. In the latter part it is generally describedudhow to make SWCNT devices.ud- Chapter 5 is on SWCNT based spin valves. The idea behind theudSWCNT is discussed (the statement of the problem) and then measurementsudusing different ferromagnetic contact materials are discussed.udTemperature dependence on TMR in SWCNT is discussed in the lastudsection of the chapter.ud- Chapter 6 is on measurements on multiterminal devices. Non-localudand semi-nonlocal measurements are shown and discussed.ud- Chapter 7 is a summary of the thesis.udDetails on experimental setups and recipes can be found in appendices.udud
机译:基于自旋的电子或自旋电子学是一个以电子的自旋/自由度为主体的领域。它是关于如何使用电子自旋来写入,传输和读取信息。自旋电子学的诞生被认为是1988年巨磁阻(GMR)的发现[1],此后在该领域取得了重大进展[2,3]。这种进展的最好的例子是所谓的自旋阀的发展。现代 udday自旋阀基于GMR,用于测量小 udmagnetic磁场。它们最常见的应用是作为硬盘读头中的传感器。 udSpintronics在概念上可以分为两部分。第一个是关于产生和检测自旋极化电子的,这通常使用铁磁材料来实现,但也可以使用光学方法来实现[3]。后一部分是关于自旋信息的相干传递。理解如何自旋信息能够在更长的距离内相干地传递是至关重要的。 ud近年来,发现了新的纳米级碳同素异形体。 ud在1985年发现了第一个富勒烯,布基球[4]和1991年的碳 udnanotubes(CNT)由饭岛住进(Sumio Iijima)发现[5]。 CNT表现为一维非导体,并且其中的电子的相干长度非常长,尤其是在单个SWCNT中,电子被发现在3μm的距离内是相干的[6]。此外,由于低自旋轨道耦合和主同位素12C的核自旋,碳被认为具有很长的自旋相干长度。这使CNTs成为用于自旋输运研究的一个有趣的 udplatform。 ud关于CNT自旋阀装置的第一项工作是在与Co电极接触的多壁碳纳米管(MWCNT)上完成的[7]。通过向装置施加磁场,可以在平行和反平行相互取向之间改变Co电极的磁化强度。分别测量平行 ud ud和反平行相互取向的电阻RP和RA,TMR定义如下 udTMR =(RA-RP)/ udis计算得出。该第一个CNT自旋阀的TMR最大值为9% ud,它为正值(即RA> RP)[7,8]。 udm后来在类似的设备中测量到了负TMR信号,即与CNT电极非接触的MWCNT。对于低电流偏置,这些 uddevices中的TMR信号的最大尺寸为36%,但是较高的电流偏置导致 TMR信号更低[9]。到那时为止,TMR的不同符号的起源还不清楚。 ud我们实验室制造的第一个CNT自旋器件是Pd1-xNix(x〜0:7)1接触的MWCNT。这些铁磁触点是透明的, 具有5:6kΩ的室温电阻。这些 uddevice的新之处在于它们配备了后门,可以在不同的运输方式之间进行调整[10]。更重要的是,证明 udTMR取决于背栅电压[11]。进一步的研究表明 udm,TMR信号取决于施加的 udgate电压是负的还是正的,但是这种行为的根源尚未得到很好的理解[12]。 ud研究TMR中的信号变化时,单壁碳纳米管 ud(通过使用甲烷作为碳源通过化学气相沉积(CVD)在室内生长的SWCNT变得可用。 CVD的生长过程已经过优化,可以生产出单独的SWCNT [13]。各个CVD 未生长的SWCNT与PdNi触点连接。在这种装置中,上开始的文章中,TMR信号都与量子点的库仑振荡相关,量子点在接触之间的SWCNT中形成。在 SWSWCNT中,量子点的行为要比在MWCNT中简单得多,并且 udgate电压可以将TMR从正值平稳地调到负值[12,14]。这项工作首次证明了三终端设备中旋转自旋传输的控制。 ud关于SWCNT自旋设备仍然存在许多悬而未决的问题。 ud在构造SWCNT自旋阀时主要存在两个问题设备。第一个是电极的开关特性 ud。与PdNi udcontacts接触的设备中的开关并不总是很清楚,表明电极由许多 udmagnetic磁畴组成。 ud后者是由于SWCNT自旋阀中的杂散效应所致。这样的 defects可能是磁库仑效应[15]或隧道各向异性磁阻 ud(TAMR)。杂散效应可能导致“错误的TMR信号”, ud udi.e。信号的切换行为取决于施加的场,这并非源自自旋的传输。该工作的重点主要是解决这些问题,但是在如何处理单个SWCNT方面也做了一些工作设备。为了更好地了解其开关行为,对PdNi ud电极进行了研究。 ud我们通过尝试在SWCNT上尝试使用其他接触材料来努力优化自旋阀 ud器件的开关特性。 ud避免杂散效应的一种方法是ud在金属纳米结构中已经表明,通过测量非本地的 udspin信号,可以避免伪像。在由四个Co触点接触的SWCNT上已经进行了非局部自旋输运测量[16]。在这项工作中制作的 ud多端子设备具有两个普通触点和两个铁磁触点。它们可以通过后门进行门控,从而使其能够研究在触点之间的管的每个段中形成的三个量子点的行为。 ud本文概述 ud-第2章是自旋电子学的基础。它包括简短的描述乌冬铁磁性和关于各向异性磁阻(AMR)对历史共振的巨磁阻(GMR)进行了简要讨论。 ud解释了隧道磁阻和朱利埃的 udmodel。 ud-第3章是关于碳纳米管的。它着重于单壁碳纳米管(SWCNT),其结构和电子性能。 ud-第4章介绍了SWCNT器件的加工。 章节的第一部分是关于SWCNT的生产和SWCNT udmaterial的表征。在实验室中投入了大量时间来寻找最佳方法,以便为我们的纳米管项目获得单独的SWCNT。描述了测试的两种主要方法,即从悬浮液铺展管和udCVD的生长。在后面的部分中,将一般性地描述制造SWCNT设备的方法。 ud-第5章介绍基于SWCNT的旋转阀。讨论了 udSWCNT的思想(问题的陈述),然后讨论了测量使用不同的铁磁接触材料。 ud在本章的最后 ud节中讨论了SWCNT对TMR的温度依赖性。 ud-第6章在多终端设备上进行测量。显示并讨论了非本地 ud和半非本地测量。 ud-第7章是论文的摘要。 ud实验设置和配方的详细信息可以在附录中找到。 ud ud

著录项

  • 作者

    Gunnarsson Gunnar 1974-;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号