首页> 外文OA文献 >Robustness, semiparametric estimation and goodness-of-fit of latent trait models.
【2h】

Robustness, semiparametric estimation and goodness-of-fit of latent trait models.

机译:鲁棒性,半参数估计和潜在性状模型的拟合优度。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis studies the one-factor latent trait model for binary data. In examines the sensitivity of the model when the assumptions about the model are violated, it investigates the information about the prior distribution when the model is estimated semi-parametrically and it also examines the goodness-of-fit of the model using Monte-Carlo simulations. Latent trait models are applied to data arising from psychometric tests, ability tests or attitude surveys. The data are often contaminated by guessing, cheating, unwillingness to give the true answer or gross errors. To study the sensitivity of the model when the data are contaminated we derive the Influence Function of the parameters and the posterior means, a tool developed in the frame of robust statistics theory. We study the behaviour of the Influence Function for changes in the data and also the behaviour of the parameters and the posterior means when the data are artificially contaminated. We further derive the Influence Function of the parameters and the posterior means for changes in the prior distribution and study empirically the behaviour of the model when the prior is a mixture of distributions. Semiparametric estimation involves estimation of the prior together with the item parameters. A new algorithm for fully semiparametric estimation of the model is given. The bootstrap is then used to study the information on the latent distribution than can be extracted from the data when the model is estimated semiparametrically. The use of the usual goodness-of-fit statistics has been hampered for latent trait models because of the sparseness of the tables. We propose the use of Monte-Carlo simulations to derive the empirical distribution of the goodness-of-fit statistics and also the examination of the residuals as they may pinpoint to the sources of bad fit.
机译:本文研究了二元数据的单因素潜在性状模型。在检查违反有关模型假设的模型的敏感性时,它会研究半参数估计模型时有关先验分布的信息,并且还会使用蒙特卡洛模拟研究模型的拟合优度。潜在特征模型适用于心理测验,能力测验或态度调查产生的数据。数据经常被猜测,作弊,不愿给出真实答案或严重错误所污染。为了研究数据被污染时模型的敏感性,我们推导了参数的影响函数和后验均值,这是在稳健统计理论框架内开发的工具。我们研究了影响函数对数据变化的行为,以及当数据被人为污染时参数和后均值的行为。我们进一步推导了参数的影响函数和先验分布变化的后验均值,并通过经验研究了当先验是分布的混合时模型的行为。半参数估计包括先验估计和项目参数。给出了用于模型的全半参数估计的新算法。然后使用引导程序研究有关潜在分布的信息,该信息在模型进行半参数估计时可以从数据中提取出来。由于表的稀疏性,通常的拟合优度统计数据的使用已无法用于潜在特征模型。我们建议使用蒙特卡洛模拟来得出拟合优度统计数据的经验分布,并检查残差,因为它们可能会指出不良拟合的来源。

著录项

  • 作者

    Tzamourani Panagiota;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号