首页> 外文OA文献 >A semi-supervised large margin algorithm for white matter hyperintensity segmentation
【2h】

A semi-supervised large margin algorithm for white matter hyperintensity segmentation

机译:一种用于白质高强度分割的半监督大边缘算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Precise detection and quantification of white matter hyperintensities (WMH) is of great interest in studies of neurodegenerative diseases (NDs). In this work, we propose a novel semi-supervised large margin algorithm for the segmentation of WMH. The proposed algorithm optimizes a kernel based max-margin objective function which aims to maximize the margin averaged over inliers and outliers while exploiting a limited amount of available labelled data. We show that the learning problem can be formulated as a joint framework learning a classifier and a label assignment simultaneously, which can be solved efficiently by an iterative algorithm. We evaluate our method on a database of 280 brain Magnetic Resonance (MR) images from subjects that either suffered from subjective memory complaints or were diagnosed with NDs. The segmented WMH volumes correlate well with the standard clinical measurement (Fazekas score), and both the qualitative visualization results and quantitative correlation scores of the proposed algorithm outperform other well known methods for WMH segmentation.
机译:精确检测和定量白质高信号(WMH)在神经退行性疾病(NDs)的研究中引起了极大的兴趣。在这项工作中,我们提出了一种新颖的半监督大余量WMH分割算法。所提出的算法优化了基于核的最大裕度目标函数,该目标函数旨在在利用有限数量的可用标记数据的同时最大化在内部和异常值上平均的裕度。我们表明,可以将学习问题表述为可同时学习分类器和标签分配的联合框架,这可以通过迭代算法有效解决。我们在来自患有主观记忆障碍或被诊断患有ND的受试者的280张脑磁共振(MR)图像的数据库中评估了我们的方法。分割后的WMH量与标准临床测量值(Fazekas评分)具有很好的相关性,所提算法的定性可视化结果和定量相关评分均优于其他众所周知的WMH分割方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号