首页> 外文OA文献 >InP Quantum Dots for Hybrid Photovoltaic Devices
【2h】

InP Quantum Dots for Hybrid Photovoltaic Devices

机译:用于混合光伏器件的Inp量子点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Significant research efforts have been directed towards the development of solar cells comprising blends of conjugated polymers and II-VI inorganic semiconductors (e.g. CdSe and CdS). Despite recent advances in the power conversion efficiency of such devices, the toxicity of Cd-based materials remains a concern with regard to widespread implementation. This thesis focuses on alternative (lower toxicity) InP nanocrystals for use as electron acceptors and light-harvesting materials in solution-processed polymer solar cells. In this thesis a combination of novel materials design/processing, transient absorption spectroscopy (TAS) and time-resolved photoluminescence spectroscopy (TRPL) is used to study the charge generation in InP:polymer photoactive layers. These studies are complimented by morphological characterisation of the photoactive layers as well as device studies. One aim of this thesis is the elucidation of quantitative structure function relationships that can be used to guide the design of new hybrid nanocomposite materials for photovoltaic devices. As such the data presented in this thesis helps to advance the present day understanding how hybrid solar cells work.udThe first chapter focuses on the synthesis of InP quantum dots (QDs) using an organometallic reaction. The aim of the work in this chapter was to prepare InP QDs with a size that provides an appropriate energy offset relative to the selected the electron donating polymer, poly(3-hexylthiophene) (P3HT). Detailed studies on the growth of InP QDs and how the reaction conditions affect the particle size are provided. The process of ligand exchange from hexadecylamine (HDA) to pyridine prior to blending with P3HT is also described.udThe second chapter focuses on charge transfer between the P3HT and the InP QDs which is a key process for achieving efficient photovoltaic device operation. Steady state and time-resolved photoluminescence and absorption spectroscopy were used to better understand the parameters influencing charge separation. After the blending and annealing conditions had been optimised to maximise the yield of photogenerated charges, the P3HT:InP blend was found to provide approximately twice yield of standard P3HT:PCBM blends. In addition, the decay lifetime of the polaron in P3HT:InP was found to be longer than that of P3HT:PCBM, suggesting the P3HT:InP blend is a promising active layer material for hybrid solar cells.udThe third chapter focuses on the fabrication and characterisation of hybrid solar cells. The fabrication conditions were optimised before carrying out detailed studies on the effect of thermal annealing. Although the device performance improved significantly with increasing annealing temperature, the net photocurrent was found to be low, compared to standard P3HT:PCBM devices, suggesting poor charge transport within the device. Nevertheless, if the charge transport can be improved, P3HT:InP still has potential to provide efficient hybrid solar cells.udThe last result chapter focuses on preliminary studies of quantum dot based light emitting diodes (QDLEDs) using InP QDs as light emitters. ZnO was used as electron transporting and hole blocking layer and poly(9,9-dioctylfluorene) (PFO) as a host medium and a hole transporting layer. The device structure and the PFO:InP blend composition were investigated to obtain QDLEDs with electroluminescence from the InP quantum dots. The findings suggest that ZnO plays a key role in suppressing the electroluminescence of PFO, most likely due to the hole blocking effect of the ZnO layer. Despite the low efficiencies of the InP-based QDLEDs, the results suggest that InP QDs are potential candidates for emitters in QDLEDs.
机译:已经进行了重大的研究努力,以开发包括共轭聚合物和II-VI无机半导体(例如CdSe和CdS)的混合物的太阳能电池。尽管最近在这种装置的功率转换效率方面取得了进步,但是基于Cd的材料的毒性仍是广泛应用的关注点。本论文的重点是替代(低毒性)InP纳米晶体,在溶液处理的聚合物太阳能电池中用作电子受体和光收集材料。本文结合新型材料设计/加工,瞬态吸收光谱法(TAS)和时间分辨光致发光光谱法(TRPL)来研究InP:聚合物光敏层中的电荷产生。这些研究通过光敏层的形态表征以及器件研究得到补充。本文的目的之一是阐明定量结构函数关系,该关系可用于指导光伏器件的新型杂化纳米复合材料的设计。因此,本论文中提供的数据有助于推动当今对混合太阳能电池工作原理的了解。 ud第一章重点介绍了使用有机金属反应合成InP量子点(QD)。本章工作的目的是制备尺寸相对于所选的供电子聚合物聚(3-己基噻吩)(P3HT)提供适当能量补偿的InP QD。提供了有关InP QD的生长以及反应条件如何影响粒径的详细研究。还介绍了在与P3HT混合之前从十六烷基胺(HDA)转变为吡啶的配体交换过程。 ud第二章着重介绍P3HT与InP QD之间的电荷转移,这是实现有效光伏器件操作的关键过程。稳态和时间分辨的光致发光和吸收光谱用于更好地了解影响电荷分离的参数。在优化混合和退火条件以使光生电荷的产率最大化之后,发现P3HT:InP共混物的产量约为标准P3HT:PCBM共混物的两倍。此外,发现极化子在P3HT:InP中的衰变寿命比P3HT:PCBM更长,这表明P3HT:InP共混物是用于混合太阳能电池的有希望的活性层材料。 ud第三章着重于制造和混合太阳能电池的特性。在进行有关热退火效果的详细研究之前,先优化了制造条件。尽管随着退火温度的提高,器件的性能得到了显着改善,但与标准的P3HT:PCBM器件相比,发现净光电流很低,表明器件内部的电荷传输很差。尽管如此,如果可以改善电荷传输,P3HT:InP仍有潜力提供高效的混合太阳能电池。 ud最后一个结果章着重于对使用InP QD作为发光体的基于量子点的发光二极管(QDLED)的初步研究。 ZnO用作电子传输和空穴传输层,聚(9,9-二辛基芴)(PFO)作为主体介质和空穴传输层。研究了器件结构和PFO:InP共混物组成,以从InP量子点获得具有电致发光的QDLED。该发现表明,ZnO在抑制PFO的电致发光中起关键作用,这很可能是由于ZnO层的空穴阻挡作用。尽管基于InP的QDLED效率低下,但结果表明InP QD是QDLED中发射极的潜在候选者。

著录项

  • 作者

    Boonkoom Thitikorn;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号