首页> 外文OA文献 >ON THE CONVERGENCE OF ADAPTIVE SEQUENTIAL MONTE CARLO METHODS
【2h】

ON THE CONVERGENCE OF ADAPTIVE SEQUENTIAL MONTE CARLO METHODS

机译:关于自适应序贯蒙特卡罗方法的收敛性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In several implementations of Sequential Monte Carlo (SMC) methods it is natural and important, in terms of algorithmic efficiency, to exploit the information of the history of the samples to optimally tune their subsequent propagations. In this article we provide a carefully formulated asymptotic theory for a class of such adaptive SMC methods. The theoretical framework developed here will cover, under assumptions, several commonly used SMC algorithms [Chopin, Biometrika 89 (2002) 539–551; Jasra et al., Scand. J. Stat. 38 (2011) 1–22; Schäfer and Chopin, Stat. Comput. 23 (2013) 163–184]. There are only limited results about the theoretical underpinning of such adaptive methods: we will bridge this gap by providing a weak law of large numbers (WLLN) and a central limit theorem (CLT) for some of these algorithms. The latter seems to be the first result of its kind in the literature and provides a formal justification of algorithms used in many real data contexts [Jasra et al. (2011); Schäfer and Chopin (2013)]. We establish that for a general class of adaptive SMC algorithms [Chopin (2002)], the asymptotic variance of the estimators from the adaptive SMC method is identical to a “limiting” SMC algorithm which uses ideal proposal kernels. Our results are supported by application on a complex high-dimensional posterior distribution associated with the Navier–Stokes model, where adapting high-dimensional parameters of the proposal kernels is critical for the efficiency of the algorithm.
机译:在顺序蒙特卡洛(SMC)方法的几种实现方式中,就算法效率而言,利用样本历史信息来优化调整其后续传播是自然而重要的。在本文中,我们为此类自适应SMC方法提供了精心设计的渐近理论。在假设的基础上,本文开发的理论框架将涵盖几种常用的SMC算法[Chopin,Biometrika 89(2002)539-551; Jasra等,Scand。 J.统计38(2011)1–22;舍费尔和肖邦,美国计算23(2013)163–184]。关于这种自适应方法的理论基础仅有有限的结果:我们将通过为某些算法提供弱的大数定律(WLLN)和中心极限定理(CLT)来弥合这种差距。后者似乎是同类文献中的第一个结果,并且为在许多实际数据环境中使用的算法提供了形式上的证明[Jasra等。 (2011); Schäferand Chopin(2013)]。我们确定,对于一类通用的SMC自适应算法[Chopin(2002)],来自自适应SMC方法的估计量的渐近方差与使用理想提议核的“有限” SMC算法相同。我们的结果得到了与Navier–Stokes模型相关的复杂高维后验分布的应用的支持,在该分布中,适应提案内核的高维参数对于算法效率至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号