首页> 外文OA文献 >Performance of machine-learning scoring functions in structure-based virtual screening
【2h】

Performance of machine-learning scoring functions in structure-based virtual screening

机译:机器学习评分功能在基于结构的虚拟筛选中的表现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Classical scoring functions have reached a plateau in their performance in virtual screening and binding affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes have shown great promise in small tailored studies. They have also raised controversy, specifically concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and three machine-learning scoring functions for model building and performance assessment. Our results show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 0.56 and -0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS benchmark and observed comparable results. We provide full data sets to facilitate further research in this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/oddt/rfscorevs_binary).
机译:古典评分功能在虚拟筛选和结合亲和力预测中的表现已达到稳定水平。最近,在蛋白质-配体复合物上训练的机器学习评分功能在小型量身定制的研究中显示出了巨大的希望。他们还引发了争议,特别是关于模型的过拟合和对新目标的适用性。在这里,我们提供了一种新的即用型评分功能(RF-Score-VS),该功能在对接至一组102个目标的15 426个活性分子和893 897个非活性分子上进行了训练。我们将完整的DUD-E数据集与三个对接工具,五个经典和三个机器学习评分功能一起用于模型构建和性能评估。我们的结果表明,RF-Score-VS可以大大改善虚拟筛选性能:RF-Score-VS的前1%提供了55.6%的命中率,而Vina的命中率仅为16.2%(对于较小的百分比,差异更令人鼓舞:RF-Score -VS最高的0.1%使用维娜(Vina)达到88.6%的命中率,占27.5%的命中率)。此外,RF-Score-VS比Vina更好地预测了测得的结合亲和力(皮尔森相关系数分别为0.56和-0.18)。最后,我们在DEKOIS基准测试的独立测试仪上测试了RF-Score-VS,并观察到了可比的结果。我们提供了完整的数据集,以促进对该领域的进一步研究(http://github.com/oddt/rfscorevs)以及现成的RF-Score-VS(http://github.com/oddt/rfscorevs_binary )。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号