首页> 外文OA文献 >Connecting clinical and actuarial prediction with rule-based methods
【2h】

Connecting clinical and actuarial prediction with rule-based methods

机译:将临床和精算预测与基于规则的方法联系起来

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction methods for clinical practice. We argue that rule-based methods may be more useful than the linear main effect models usually employed in prediction studies, from a data and decision analytic as well as a practical perspective. In addition, decision rules derived with rule-based methods can be represented as fast and frugal trees, which, unlike main effects models, can be used in a sequential fashion, reducing the number of cues that have to be evaluated before making a prediction. We illustrate the usability of rule-based methods by applying RuleFit, an algorithm for deriving decision rules for classification and regression problems, to a dataset on prediction of the course of depressive and anxiety disorders from Penninx et al. (2011). The RuleFit algorithm provided a model consisting of 2 simple decision rules, requiring evaluation of only 2 to 4 cues. Predictive accuracy of the 2-rule model was very similar to that of a logistic regression model incorporating 20 predictor variables, originally applied to the dataset. In addition, the 2-rule model required, on average, evaluation of only 3 cues. Therefore, the RuleFit algorithm appears to be a promising method for creating decision tools that are less time consuming and easier to apply in psychological practice, and with accuracy comparable to traditional actuarial methods. (PsycINFO Database Record (c) 2015 APA, all rights reserved)
机译:荟萃分析比较了临床和精算预测的准确性,显示精算方法平均优于临床方法。然而,精算方法仍未在临床实践中广泛使用,并且已经呼吁开发用于临床实践的精算预测方法。我们认为,从数据和决策分析以及实践的角度来看,基于规则的方法可能比通常用于预测研究的线性主效应模型更有用。此外,使用基于规则的方法得出的决策规则可以表示为快速节俭的树,与主要效果模型不同,它们可以按顺序使用,从而减少了在进行预测之前必须评估的线索数量。我们通过将Penninx等人对抑郁和焦虑症的病程进行预测的数据集应用RuleFit(一种用于推导分类和回归问题的决策规则的算法)来说明基于规则的方法的可用性。 (2011)。 RuleFit算法提供了一个由2个简单决策规则组成的模型,仅需要评估2至4个线索。 2规则模型的预测准确性与最初应用于数据集的包含20个预测变量的逻辑回归模型非常相似。此外,两规则模型平均仅需要评估3个线索。因此,RuleFit算法似乎是一种有前途的方法,可用于创建决策工具,这些工具耗时较少,更易于在心理实践中应用,并且准确性可与传统的精算方法相媲美。 (PsycINFO数据库记录(c)2015 APA,保留所有权利)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号