首页> 外文OA文献 >Pricing European and American bond options under the Hull-White extended Vasicek Model
【2h】

Pricing European and American bond options under the Hull-White extended Vasicek Model

机译:在Hull-White扩展Vasicek模型下定价欧洲和美国债券期权

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this dissertation, we consider the Hull-White term structure problem with the boundary value condition given as the payoff of a European bond option. We restrict ourselves to the case where the parameters of the Hull-White model are strictly positive constants and from the risk neutral valuation formula, we first derive simple closed–form expression for pricing European bond option in the Hull-White extended Vasicek model framework. As the European option can be exercised only on the maturity date, we then examine the case of early exercise opportunity commonly called American option. With the analytic representation of American bond option being very hard to handle, we are forced to resort to numerical experiments. To do it excellently, we transform the Hull-White term structure equation into the diffusion equation and we first solve it through implicit, explicit and Crank-Nicolson (CN) difference methods. As these standard finite difference methods (FDMs) require truncation of the domain from infinite to finite one, which may deteriorate the computational efficiency for American bond option, we try to build a CN method over an unbounded domain. We introduce an exact artificial boundary condition in the pricing boundary value problem to reduce the original to an initial boundary problem. Then, the CN method is used to solve the reduced problem. We compare our performance with standard FDMs and the results through illustration show that our method is more efficient and accurate than standard FDMs when we price American bond option.
机译:在本文中,我们考虑了Hull-White期限结构问题,其中边值条件作为欧洲债券期权的收益。我们将自己限制在Hull-White模型的参数严格为正常数的情况下,并且根据风险中性估值公式,我们首先在Hull-White扩展Vasicek模型框架中导出用于对欧洲债券期权定价的简单封闭式表达式。由于欧洲期权只能在到期日行使,因此我们研究了通常称为美国期权的提前行使机会的情况。由于美国债券期权的分析表示很难处理,因此我们不得不诉诸于数值实验。为了出色地做到这一点,我们将Hull-White项结构方程转换为扩散方程,并首先通过隐式,显式和Crank-Nicolson(CN)差分方法对其进行求解。由于这些标准的有限差分方法(FDM)要求将域从无限域截断到有限域,这可能会降低美国债券期权的计算效率,因此我们尝试在无边界域上构建CN方法。我们在定价边值问题中引入了精确的人工边界条件,以将原始边界条件简化为初始边界问题。然后,CN方法用于解决简化的问题。我们将我们的性能与标准FDM进行了比较,结果通过说明显示,当我们为美国债券期权定价时,我们的方法比标准FDM更加有效和准确。

著录项

  • 作者

    Mpanda Marc Mukendi;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号