首页> 外文OA文献 >Panoramic Background Modeling for PTZ Cameras with Competitive Learning Neural Networks
【2h】

Panoramic Background Modeling for PTZ Cameras with Competitive Learning Neural Networks

机译:基于竞争学习神经网络的pTZ摄像机全景背景建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The construction of a model of the background of ascene still remains as a challenging task in video surveillance systems, in particular for moving cameras. This work presents a novel approach for constructing a panoramic background model based on competitive learning neural networks and a subsequent piecewise linear interpolation by Delaunay triangulation. The approach can handle arbitrary camera directions and zooms for a Pan-Tilt-Zoom (PTZ) camera-based surveillance system. After testing the proposed approach on several indoor sequences, the results demonstrate that the proposed method is effective and suitable to use for real-time video surveillance applications.
机译:在视频监控系统中,尤其是在移动摄像机中,建立背景的背景模型仍然是一项艰巨的任务。这项工作提出了一种基于竞争性学习神经网络和随后通过Delaunay三角剖分的分段线性插值法构建全景背景模型的新颖方法。该方法可以处理任意摄像机方向,并可对基于Pan-Tilt-Zoom(PTZ)摄像机的监视系统进行缩放。在几个室内序列上测试了该方法后,结果表明该方法是有效的,适合用于实时视频监控应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号