首页> 外文OA文献 >Multimodal image data fusion for Alzheimer’s Disease diagnosis by Sparse Representation
【2h】

Multimodal image data fusion for Alzheimer’s Disease diagnosis by Sparse Representation

机译:基于稀疏表示的阿尔茨海默病多模态图像数据融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Alzheimer's Diasese (AD) diagnosis can be carried out by analysing functional or structural changes in the brain. Functional changes associated to neurological disorders can be figured out by positron emission tomography (PET) as it allows to study the activation of certain areas of the brain during specific task development. On the other hand, neurological disorders can also be discovered by analysing structural changes in the brain which are usually assessed by Magnetic Resonance Imaging (MRI). In fact, computer-aided diagnosis tools (CAD) that have been recently devised for the diagnosis of neurological disorders use functional or structural data. However, functional and structural data can be fused out in order to improve the accuracy and to diminish the false positive rate in CAD tools. In this paper we present a method for the diagnosis of AD which fuses multimodal image (PET and MRI) data by combining Sparse Representation Classifiers (SRC). The method presented in this work shows accuracy values up to 95% and clearly outperforms the classification outcomes obtained using single-modality images.
机译:阿尔茨海默氏症(AD)诊断可以通过分析大脑的功能或结构变化来进行。可以通过正电子发射断层扫描(PET)找出与神经系统疾病相关的功能性变化,因为它可以研究特定任务发展过程中大脑某些区域的激活。另一方面,神经系统疾病也可以通过分析大脑的结构变化来发现,通常通过磁共振成像(MRI)进行评估。实际上,最近为诊断神经系统疾病而设计的计算机辅助诊断工具(CAD)使用功能或结构数据。但是,可以融合功能和结构数据,以提高准确性并减少CAD工具中的误报率。在本文中,我们提出了一种通过组合稀疏表示分类器(SRC)融合多模态图像(PET和MRI)数据的AD诊断方法。这项工作中提出的方法显示出高达95%的准确度值,并且明显优于使用单模态图像获得的分类结果。

著录项

  • 作者

    Ortiz Andrés;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号