首页> 外文OA文献 >A Survey on Computer-Aided Diagnosis of Brain Disorders through MRI Based on Machine Learning and Data Mining Methodologies with an Emphasis on Alzheimer Disease Diagnosis and the Contribution of the Multimodal Fusion
【2h】

A Survey on Computer-Aided Diagnosis of Brain Disorders through MRI Based on Machine Learning and Data Mining Methodologies with an Emphasis on Alzheimer Disease Diagnosis and the Contribution of the Multimodal Fusion

机译:基于机器学习和数据挖掘方法的MRI计算机辅助诊断脑疾病诊断调查,重点对阿尔茨海默病诊断及多峰融合的贡献

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computer-aided diagnostic (CAD) systems use machine learning methods that provide a synergistic effect between the neuroradiologist and the computer, enabling an efficient and rapid diagnosis of the patient’s condition. As part of the early diagnosis of Alzheimer’s disease (AD), which is a major public health problem, the CAD system provides a neuropsychological assessment that helps mitigate its effects. The use of data fusion techniques by CAD systems has proven to be useful, they allow for the merging of information relating to the brain and its tissues from MRI, with that of other types of modalities. This multimodal fusion refines the quality of brain images by reducing redundancy and randomness, which contributes to improving the clinical reliability of the diagnosis compared to the use of a single modality. The purpose of this article is first to determine the main steps of the CAD system for brain magnetic resonance imaging (MRI). Then to bring together some research work related to the diagnosis of brain disorders, emphasizing AD. Thus the most used methods in the stages of classification and brain regions segmentation are described, highlighting their advantages and disadvantages. Secondly, on the basis of the raised problem, we propose a solution within the framework of multimodal fusion. In this context, based on quantitative measurement parameters, a performance study of multimodal CAD systems is proposed by comparing their effectiveness with those exploiting a single MRI modality. In this case, advances in information fusion techniques in medical imagery are accentuated, highlighting their advantages and disadvantages. The contribution of multimodal fusion and the interest of hybrid models are finally addressed, as well as the main scientific assertions made, in the field of brain disease diagnosis.
机译:计算机辅助诊断(CAD)系统使用机器学习方法,可在神经皮层和计算机之间提供协同效应,从而实现患者病情的高效且快速诊断。作为阿尔茨海默病的早期诊断的一部分(AD),这是一个主要的公共卫生问题,CAD系统提供了神经心理学评估,有助于减轻其影响。通过CAD系统使用数据融合技术已经证明是有用的,它们允许与MRI的脑及其组织有关的信息合并,具有其他类型的方式。这种多模式融合通过降低冗余和随机性来改善大脑图像的质量,这有助于提高诊断的临床可靠性与单个模态相比。本文的目的首先是确定脑磁共振成像(MRI)的CAD系统的主要步骤。然后汇集一些与脑疾病诊断相关的研究工作,强调广告。因此,描述了分类和脑区分割阶段中最使用的方法,突出显示其优点和缺点。其次,在提出的问题的基础上,我们提出了一种在多模式融合框架内的解决方案。在这种情况下,基于定量测量参数,通过将它们的有效性与利用单一MRI模态的效果进行比较来提出多峰CAD系统的性能研究。在这种情况下,医疗图像中信息融合技术的进步是强调的,突出了它们的优缺点。最终解决了多模式融合的贡献和混合模型的兴趣,以及在脑病诊断领域的主要科学断言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号