首页> 外文OA文献 >Modelling and control of magnetorheological dampers for vehicle suspension systems
【2h】

Modelling and control of magnetorheological dampers for vehicle suspension systems

机译:汽车悬架系统磁流变阻尼器的建模与控制

摘要

Magnetorheological (MR) dampers are adaptive devices whose properties can be adjusted through the application of a controlled voltage signal. A semi-active suspension system incorporating MR dampers combines the advantages of both active and passive suspensions. For this reason, there has been a continuous effort to develop control algorithms for MR-damped vehicle suspension systems to meet the requirements of the automotive industry. The overall aims of this thesis are twofold: (i) The investigation of non-parametric techniques for the identification of the nonlinear dynamics of an MR damper. (ii) The implementation of these techniques in the investigation of MR damper control of a vehicle suspension system that makes minimal use of sensors, thereby reducing the implementation cost and increasing system reliability. The novel contributions of this thesis can be listed as follows: 1- Nonparametric identification modelling of an MR damper using Chebyshev polynomials to identify the damping force from both simulated and experimental data. 2- The neural network identification of both the direct and inverse dynamics of an MR damper through an experimental procedure. 3- The experimental evaluation of a neural network MR damper controller relative to previously proposed controllers. 4- The application of the neural-based damper controller trained through experimental data to a semi-active vehicle suspension system. 5- The development and evaluation of an improved control strategy for a semi-active car seat suspension system using an MR damper. Simulated and experimental validation data tests show that Chebyshev polynomials can be used to identify the damper force as an approximate function of the displacement, velocity and input voltage. Feed-forward and recurrent neural networks are used to model both the direct and inverse dynamics of MR dampers. It is shown that these neural networks are superior to Chebyshev polynomials and can reliably represent both the direct and inverse dynamic behaviours of MR dampers. The neural network models are shown to be reasonably robust against significant temperature variation. Experimental tests show that an MR damper controller based a recurrent neural network (RNN) model of its inverse dynamics is superior to conventional controllers in achieving a desired damping force, apart from being more cost-effective. This is confirmed by introducing such a controller into a semi-active suspension, in conjunction with an overall system controller based on the sliding mode control algorithm. Control performance criteria are evaluated in the time and frequency domains in order to quantify the suspension effectiveness under bump and random road excitations. A study using the modified Bouc-Wen model for the MR damper, and another study using an actual damper fitted in a hardware-in-the-loop- simulation (HILS), both show that the inverse RNN damper controller potentially gives significantly superior ride comfort and vehicle stability. It is also shown that a similar control strategy is highly effective when used for a semi-active car seat suspension system incorporating an MR damper.
机译:磁流变(MR)阻尼器是自适应设备,其性能可通过施加受控电压信号进行调整。带有MR阻尼器的半主动悬架系统结合了主动和被动悬架的优点。因此,一直在努力开发用于MR阻尼车辆悬架系统的控制算法,以满足汽车行业的需求。本文的总体目标是双重的:(i)研究用于确定MR阻尼器非线性动力学特性的非参数技术。 (ii)这些技术在最小化传感器使用的车辆悬架系统的MR阻尼器控制的研究中的实现,从而降低了实现成本并提高了系统可靠性。本论文的新颖贡献可以列举如下:1-使用Chebyshev多项式从仿真和实验数据中识别阻尼力的MR阻尼器的非参数识别模型。 2-通过实验程序对MR阻尼器的正向和反向动力学进行神经网络识别。 3-相对于先前提出的控制器的神经网络MR阻尼器控制器的实验评估。 4-通过实验数据训练的基于神经的阻尼器控制器在半主动车辆悬架系统中的应用。 5-针对使用MR阻尼器的半主动式汽车座椅悬架系统的改进控制策略的开发和评估。仿真和实验验证数据测试表明,切比雪夫多项式可用于将阻尼力识别为位移,速度和输入电压的近似函数。前馈和递归神经网络用于模拟MR阻尼器的正向和反向动力学。结果表明,这些神经网络优于Chebyshev多项式,并且可以可靠地表示MR阻尼器的正向和逆向动态行为。该神经网络模型显示出对显着的温度变化具有相当强的鲁棒性。实验测试表明,基于MR阻尼器控制器的逆动力学的递归神经网络(RNN)模型在实现所需的阻尼力方面优于传统控制器,并且更具成本效益。通过将这样的控制器与基于滑模控制算法的整个系统控制器一起引入半主动悬架中,可以确认这一点。在时域和频域中评估控制性能标准,以量化颠簸和随机道路激励下的悬架效果。对MR阻尼器使用改进的Bouc-Wen模型进行的一项研究,以及在硬件在环仿真(HILS)中安装的实际阻尼器的另一项研究均表明,反向RNN阻尼器控制器可能会显着提高行驶性能舒适性和车辆稳定性。还显示出,当用于装有MR阻尼器的半主动汽车座椅悬架系统时,类似的控制策略非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号