首页> 外文OA文献 >A high performance automatic face recognition system using 3D shape information
【2h】

A high performance automatic face recognition system using 3D shape information

机译:一种使用3D形状信息的高性能自动人脸识别系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Face recognition is one of the most important applications to receive attention in the areas of Computer Vision and Pattern Recognition. However, face recognition has many challenges and difficulties, such as the requirement for high speed search in large datasets and the requirement for high match accuracy under various noise conditions. Currently, as numerous 3D face datasets become available, more and more researchers start to move their concentration to 3D face recognition. Compared with 2D face image, 3D face images contain more explicit information which is very useful for dealing with the head orientation and the facial expression problem. In this thesis, a framework to implement automatic 3D face recognition is proposed and implemented. In the first stage, a key facial feature - the nose has to be extracted for the subsequent face recognition process. In order to exploit the local feature information, we present a face feature extraction methods based on a 3D shape descriptor. Two different 3D shape descriptor Multi Contour Surface Angle Moments Descriptor(MCSAMD) and Multi Shell Surface Angle Moments Descriptor(MSSAMD) are designed and implemented. The nose tip is identified using a binary neural network technique called k-Nearest Neighbour Correlation Matrix Memories(CMM) algorithm. The main face area is localized and cropped based on the nose tip localization with an identification rate of almost 100% on FRGC 3D face database. Secondly, a face aligned approach is implemented by applying a combination of methods including Principal Component Analysis(PCA) face correction, Iterative Closest Point algorithms(ICP) and the alignment using the symmetry of human face. All faces are aligned to a unified coordinate system from the original pose position even under expression variations. The position of the nose tip is also further corrected. After the face alignment, the main face area is divided into several regions with different weights according to the face expression variability. Similarity measurement algorithms based on the pose-invariant 3D shape descriptor MSSAMD are used to match the corresponding regions for different faces. The expression variability weights are applied in the final consideration of face identification and verification. Experiments are performed on the FRGC database which is the largest 3D face database of 4950 faces with different expressions. In the experiments dealing with 4007 faces with different expressions, a 91.96% verification at a false acceptance rate(FAR) of 0.1% and a 97.63% rank-one identification rate are achieved.
机译:人脸识别是在计算机视觉和模式识别领域引起关注的最重要应用之一。但是,人脸识别存在许多挑战和困难,例如在大型数据集中需要进行高速搜索以及在各种噪声条件下都需要较高的匹配精度。当前,随着众多3D人脸数据集的出现,越来越多的研究人员开始将注意力转移到3D人脸识别上。与2D面部图像相比,3D面部图像包含更明确的信息,这对于处理头部方向和面部表情问题非常有用。本文提出并实现了一种实现自动3D人脸识别的框架。在第一阶段,关键的面部特征-鼻子必须拔出,以进行后续的面部识别过程。为了利用局部特征信息,我们提出了一种基于3D形状描述符的面部特征提取方法。设计并实现了两种不同的3D形状描述符多轮廓表面角矩描述符(MCSAMD)和多壳表面角矩描述符(MSSAMD)。鼻尖使用称为k最近邻相关矩阵内存(CMM)算法的二进制神经网络技术进行识别。在FRGC 3D面部数据库上,根据鼻尖的位置对主要面部区域进行了定位和裁剪,识别率几乎为100%。其次,通过应用包括主成分分析(PCA)人脸校正,迭代最近点算法(ICP)和利用人脸对称性进行对齐的方法的组合来实现人脸对齐方法。即使在表情变化的情况下,所有面孔也都将从原始姿势位置对齐到统一坐标系。鼻尖的位置也被进一步校正。面部对齐后,根据面部表情的可变性,将主面部区域划分为多个权重不同的区域。基于姿势不变的3D形状描述符MSSAMD的相似度测量算法用于匹配不同面孔的相应区域。表情可变性权重用于人脸识别和验证的最终考虑中。实验是在FRGC数据库上进行的,该数据库是4950个具有不同表情的面部的最大3D面部数据库。在处理具有不同表情的4007张面孔的实验中,以0.1%的错误接受率(FAR)实现了91.96%的验证,而第一级识别率则为97.63%。

著录项

  • 作者

    Ju Quan;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号