...
首页> 外文期刊>Image and Vision Computing >Automatic local shape spectrum analysis for 3D facial expression recognition
【24h】

Automatic local shape spectrum analysis for 3D facial expression recognition

机译:用于3D面部表情识别的自动局部形状频谱分析

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate the problem of Facial Expression Recognition (FER) using 3D data. Building from one of the most successful frameworks for facial analysis using exclusively 3D geometry, we extend the analysis from a curve-based representation into a spectral representation, which allows a complete description of the underlying surface that can be further tuned to the desired level of detail. Spectral representations are based on the decomposition of the geometry in its spatial frequency components, much like a Fourier transform, which are related to intrinsic characteristics of the surface. In this work, we propose the use of Graph Laplacian Features (GLFs), which result from the projection of local surface patches into a common basis obtained from the Graph Laplacian eigenspace. We extract patches around facial landmarks and include a state-of-the-art localization algorithm to allow for fully-automatic operation. The proposed approach is tested on the three most popular databases for 3D FER (BU-3DFE, Bosphorus and BU-4DFE) in terms of expression and AU recognition. Our results show that the proposed GLFs consistently outperform the curves-based approach as well as the most popular alternative for spectral representation, Shape-DNA, which is based on the Laplace Beltrami Operator and cannot provide a stable basis that guarantee that the extracted signatures for the different patches are directly comparable. Interestingly, the accuracy improvement brought by GLFs is obtained also at a lower computational cost. Considering the extraction of patches as a common step between the three compared approaches, the curves-based framework requires a costly elastic deformation between corresponding curves (e.g. based on splines) and Shape-DNA requires computing an eigen-decomposition of every new patch to be analyzed. In contrast, GLFs only require the projection of the patch geometry into the Graph Laplacian eigenspace, which is common to all patches and can therefore be pre-computed off-line. We also show that 14 automatically detected landmarks are enough to achieve high FER and AU detection rates, only slightly below those obtained when using sets of manually annotated landmarks. (C) 2018 Elsevier B.V. All rights reserved.
机译:我们使用3D数据调查面部表情识别(FER)问题。从仅使用3D几何的最成功的面部分析框架之一构建,我们将分析从基于曲线的表示扩展为光谱表示,从而可以完整描述底层表面,并将其进一步调整至所需的水平。详情。光谱表示基于几何形状在其空间频率分量中的分解,就像傅立叶变换一样,这与表面的固有特性有关。在这项工作中,我们建议使用图拉普拉斯特征(GLF),该特征是将局部表面斑块投影到从图拉普拉斯特征空间获得的公共基础中得出的。我们提取面部标志周围的补丁,并包含最新的定位算法,以实现全自动操作。在3D FER(BU-3DFE,Bosphorus和BU-4DFE)三个最受欢迎的数据库中,就表达和AU识别而言,对所提出的方法进行了测试。我们的结果表明,提出的GLF始终优于基于曲线的方法以及光谱表示法中最受欢迎的替代方法Shape-DNA,Shape-DNA是基于Laplace Beltrami算子的,不能提供稳定的基础来确保提取的特征码不同的补丁可以直接比较。有趣的是,也以较低的计算成本获得了由GLF带来的精度提高。考虑到斑块的提取是这三种比较方法之间的共同步骤,基于曲线的框架要求相应曲线之间的代价高昂的弹性变形(例如基于样条线),而Shape-DNA需要计算每个新斑块的本征分解。分析。相比之下,GLF仅需要将补丁几何图形投影到图拉普拉斯特征空间中,这对所有补丁都是通用的,因此可以离线进行预先计算。我们还显示了14个自动检测到的地标足以实现较高的FER和AU检测率,仅略低于使用手动注释的地标集时获得的检测率。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号