首页> 外文OA文献 >Data mining using intelligent systems : an optimized weighted fuzzy decision tree approach
【2h】

Data mining using intelligent systems : an optimized weighted fuzzy decision tree approach

机译:使用智能系统的数据挖掘:优化的加权模糊决策树方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data mining can be said to have the aim to analyze the observational datasets to find relationships and to present the data in ways that are both understandable and useful. In this thesis, some existing intelligent systems techniques such as Self-Organizing Map, Fuzzy C-means and decision tree are used to analyze several datasets. The techniques are used to provide flexible information processing capability for handling real-life situations. This thesis is concerned with the design, implementation, testing and application of these techniques to those datasets. The thesis also introduces a hybrid intelligent systems technique: Optimized Weighted Fuzzy Decision Tree (OWFDT) with the aim of improving Fuzzy Decision Trees (FDT) and solving practical problems. This thesis first proposes an optimized weighted fuzzy decision tree, incorporating the introduction of Fuzzy C-Means to fuzzify the input instances but keeping the expected labels crisp. This leads to a different output layer activation function and weight connection in the neural network (NN) structure obtained by mapping the FDT to the NN. A momentum term was also introduced into the learning process to train the weight connections to avoid oscillation or divergence. A new reasoning mechanism has been also proposed to combine the constructed tree with those weights which had been optimized in the learning process. This thesis also makes a comparison between the OWFDT and two benchmark algorithms, Fuzzy ID3 and weighted FDT. SIx datasets ranging from material science to medical and civil engineering were introduced as case study applications. These datasets involve classification of composite material failure mechanism, classification of electrocorticography (ECoG)/Electroencephalogram (EEG) signals, eye bacteria prediction and wave overtopping prediction. Different intelligent systems techniques were used to cluster the patterns and predict the classes although OWFDT was used to design classifiers for all the datasets. In the material dataset, Self-Organizing Map and Fuzzy C-Means were used to cluster the acoustic event signals and classify those events to different failure mechanism, after the classification, OWFDT was introduced to design a classifier in an attempt to classify acoustic event signals. For the eye bacteria dataset, we use the bagging technique to improve the classification accuracy of Multilayer Perceptrons and Decision Trees. Bootstrap aggregating (bagging) to Decision Tree also helped to select those most important sensors (features) so that the dimension of the data could be reduced. Those features which were most important were used to grow the OWFDT and the curse of dimensionality problem could be solved using this approach. The last dataset, which is concerned with wave overtopping, was used to benchmark OWFDT with some other Intelligent Systems techniques, such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Evolving Fuzzy Neural Network (EFuNN), Genetic Neural Mathematical Method (GNMM) and Fuzzy ARTMAP. Through analyzing these datasets using these Intelligent Systems Techniques, it has been shown that patterns and classes can be found or can be classified through combining those techniques together. OWFDT has also demonstrated its efficiency and effectiveness as compared with a conventional fuzzy Decision Tree and weighted fuzzy Decision Tree.
机译:可以说数据挖掘的目的是分析观测数据集以找到关系并以易于理解和有用的方式呈现数据。本文利用自组织映射,模糊C均值和决策树等现有的智能系统技术对多个数据集进行分析。该技术用于提供灵活的信息处理能力,以处理现实生活中的情况。本文涉及这些技术在这些数据集上的设计,实现,测试和应用。本文还介绍了一种混合智能系统技术:优化加权模糊决策树(OWFDT),旨在改进模糊决策树(FDT)和解决实际问题。本文首先提出了一种优化的加权模糊决策树,结合了模糊C-均值的引入来模糊输入实例,同时保持期望的标签清晰。这导致通过将FDT映射到NN而获得的神经网络(NN)结构中的输出层激活函数和权重连接不同。动量项也被引入到学习过程中以训练配重连接,以避免振荡或发散。还提出了一种新的推理机制,将构造的树与在学习过程中已优化的权重相结合。本文还对OWFDT与两种基准算法FuzzyID3和加权FDT进行了比较。介绍了从材料科学到医学和土木工程的SIx数据集,作为案例研究应用程序。这些数据集包括复合材料破坏机制的分类,脑电图(ECoG)/脑电图(EEG)信号的分类,眼细菌预测和波超顶预测。尽管使用OWFDT为所有数据集设计分类器,但仍使用了不同的智能系统技术对模式进行聚类并预测类别。在材料数据集中,使用自组织映射和模糊C均值对声音事件信号进行聚类,并将这些事件分类为不同的故障机制,在分类之后,引入OWFDT来设计分类器,以尝试对声音事件信号进行分类。对于眼细菌数据集,我们使用装袋技术来提高多层感知器和决策树的分类准确性。对决策树进行引导聚合(装袋)还有助于选择那些最重要的传感器(功能),从而可以减少数据的维度。那些最重要的特征被用于增长OWFDT,并且可以使用这种方法解决维数问题的诅咒。最后一个与波超标有关的数据集被用于通过其他一些智能系统技术对OWFDT进行基准测试,例如自适应神经模糊推理系统(ANFIS),演化模糊神经网络(EFuNN),遗传神经数学方法(GNMM)和模糊ARTMAP。通过使用这些智能系统技术分析这些数据集,已表明可以通过将这些技术组合在一起来找到或分类模式和类别。与传统的模糊决策树和加权模糊决策树相比,OWFDT还证明了其效率和有效性。

著录项

  • 作者

    Li XuQin;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号