首页> 外文OA文献 >Investigating information processing within the brain using multi-electrode array (MEA) electrophysiology data
【2h】

Investigating information processing within the brain using multi-electrode array (MEA) electrophysiology data

机译:使用多电极阵列(mEa)电生理学数据研究大脑内的信息处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

How a stimulus, such as an odour, is represented in the brain is one of the main questions in neuroscience. It is becoming clearer that information is encoded by a population of neurons, but, how the spiking activity of a population of neurons conveys this information is unknown. Several population coding hypotheses have formulated over the years, and therefore, to obtain a more definitive answer as to how a population of neurons represents stimulus information we need to test, i.e. support or falsify, each of the hypotheses. One way of addressing these hypotheses is to record and analyse the activity of multiple individual neurons from the brain of a test subject when a stimulus is, and is not, presented. With the advent of multi electrode arrays (MEA) we can now record such activity. However, before we can investigate/test the population coding hypotheses using such recordings, we need to determine the number of neurons recorded by the MEA and their spiking activity, after spike detection, using an automatic spike sorting algorithm (we refer to the spiking activity of the neurons extracted from the MEA recordings as MEA sorted data). While there are many automatic spike sorting methods available, they have limitations. In addition, we are lacking methods to test/investigate the population coding hypotheses in detail using the MEA sorted data. That is, methods that show whether neurons respond in a hypothesised way and, if they do, shows how the stimulus is represented within the recorded area. Thus, in this thesis, we were motivated to, firstly, develop a new automatic spike sorting method, which avoids the limitations of other methods. We validated our method using simulated and biological data. In addition, we found our method can perform better than other standard methods. We next focused on the population rate coding hypothesis (i.e. the hypothesis that information is conveyed in the number of spikes fired by a pop- ulation of neurons within a relevant time period). More specifically, we developed a method for testing/investigating the population rate coding hypothesis using the MEA sorted data. That is, a method that uses the multi variate analysis of variance (MANOVA) test, where we modified its output, to show the most responsive subar- eas within the recorded area. We validated this using simulated and biological data. Finally, we investigated whether noise correlation between neurons (i.e. correlations in the trial to trial variability of the response of neurons to the same stimulus) in a rat's olfactory bulb can affect the amount of information a population rate code conveys about a set of stimuli. We found that noise correlation between neurons was predominately positive, which, ultimately, reduced the amount of information a population containing >45 neurons could convey about the stimuli by ~30%.
机译:刺激物(如气味)在大脑中的表达方式是神经科学中的主要问题之一。信息是由一组神经元编码的,这一点变得越来越清楚,但是,一组神经元的尖峰活动如何传达此信息是未知的。这些年来,已经提出了几种人口编码假设,因此,要获得关于神经元人口如何表示刺激信息的更明确的答案,我们需要测试每种假设,即支持或证伪。解决这些假设的一种方法是记录和分析当一个刺激出现或不出现时来自测试对象大脑的多个单个神经元的活动。随着多电极阵列(MEA)的出现,我们现在可以记录这种活动。但是,在我们可以使用此类记录调查/测试总体编码假设之前,我们需要确定MEA记录的神经元数量以及其尖峰活动,在尖峰检测之后,使用自动尖峰排序算法(我们称为尖峰活动)从MEA记录中提取的神经元作为MEA分类数据)。尽管有许多自动峰值分类方法可用,但它们有局限性。此外,我们缺少使用MEA排序数据来详细测试/研究总体编码假设的方法。也就是说,可以显示神经元是否以假设的方式做出反应的方法,如果可以,则可以显示在记录区域内如何表示刺激。因此,在本文中,我们的动机是,首先,开发一种新的自动峰值分类方法,该方法避免了其他方法的局限性。我们使用模拟和生物学数据验证了我们的方法。此外,我们发现我们的方法可以比其他标准方法更好地执行。接下来,我们关注人口比率编码假说(即,在相关时间段内,信息以神经元数量触发的尖峰数来传达的假说)。更具体地说,我们开发了一种使用MEA排序数据来测试/调查人口比率编码假设的方法。也就是说,一种使用多变量方差分析(MANOVA)检验的方法,在此我们修改了其输出,以显示记录区域内响应最迅速的子区域。我们使用模拟和生物学数据验证了这一点。最后,我们研究了大鼠嗅球中神经元之间的噪声相关性(即试验中神经元对相同刺激的反应变异性的试验之间的相关性)是否会影响种群率代码传达的一组刺激信息量。我们发现神经元之间的噪声相关性主要是正相关的,最终使包含> 45个神经元的人群可以传递的有关刺激的信息量减少了约30%。

著录项

  • 作者

    Horton Paul Michael;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号