首页> 外文OA文献 >On finite groups of isometries of handlebodies in arbitrary dimensions and finite extensions of Schottky groups
【2h】

On finite groups of isometries of handlebodies in arbitrary dimensions and finite extensions of Schottky groups

机译:关于任意尺寸的车体等距的有限组和肖特基组的有限扩展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is known that the order of a finite group of diffeomorphisms of a 3-dimensional handlebody of genus g > 1 is bounded by the linear polynomial 12(g-1), and that the order of a finite group of diffeomorphisms of a 4-dimensional handlebody (or equivalently, of its boundary 3-manifold), faithful on the fundamental group, is bounded by a quadratic polynomial in g (but not by a linear one). In the present paper we prove a generalization for handlebodies of arbitrary dimension d, uniformizing handlebodies by Schottky groups and considering finite groups of isometries of such handlebodies. We prove that the order of a finite group of isometries of a handlebody of dimension d acting faithfully on the fundamental group is bounded by a polynomial of degree d/2 in g if d is even, and of degree (d+1)/2 if d is odd, and that the degree d/2 for even d is best possible. This implies then analogous polynomial Jordan-type bounds for arbitrary finite groups of isometries of handlebodies (since a handlebody of dimension d > 3 admits S^1-actions, there does not exist an upper bound for the order of the group itself ).
机译:已知g≥1的3维柄体的有限亚组的阶以线性多项式12(g-1)为界,而4具有限亚组的阶为4。忠实于基本组的三维手柄体(或等效地,其边界3的歧管)由g中的二次多项式(但不受线性1)限制。在本文中,我们证明了对任意尺寸d的车体的一般化,通过肖特基基团统一了车体,并考虑了此类车体等距的有限组。我们证明了忠实地作用于基团上的尺寸为d的手柄体的一组有限个等距的阶次,如果d为偶数,则以g的d / 2级和(d + 1)/ 2级的多项式为界如果d是奇数,则偶数d的度d / 2最好。这意味着对于手把的等距的任意有限组,类似的多项式约旦型界(由于尺寸为d> 3的手把允许S ^ 1动作,因此不存在该组本身顺序的上限)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号