首页> 外文OA文献 >Classifying complex topics using spatial-semantic document visualization : an evaluation of an interaction model to support open-ended search tasks
【2h】

Classifying complex topics using spatial-semantic document visualization : an evaluation of an interaction model to support open-ended search tasks

机译:使用空间语义文档可视化对复杂主题进行分类:评估交互模型以支持开放式搜索任务

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this dissertation we propose, test and develop a novel search interaction model to address two key problems associated with conducting an open-ended search task within a classical information retrieval system: (i) the need to reformulate the query within the context of a shifting conception of the problem and (ii) the need to integrate relevant results across a number of separate results sets. In our model the user issues just one highrecall query and then performs a sequence of more focused, distinct aspect searches by browsing the static structured context of a spatial-semantic visualization of this retrieved document set. Our thesis is that unsupervised spatial-semantic visualization can automatically classify retrieved documents into a two-level hierarchy of relevance. In particular we hypothesise that the locality of any given aspect exemplar will tend to comprise a sufficient proportion of same-aspect documents to support a visually guided strategy for focused, same-aspect searching that we term the aspect cluster growing strategy. We examine spatial-semantic classification and potential aspect cluster growing performance across three scenarios derived from topics and relevance judgements from the TREC test collection. Our analyses show that the expected classification can be represented in spatial-semantic structures created from document similarities computed by a simple vector space text analysis procedure. We compare two diametrically opposed approaches to layout optimisation: a global approach that focuses on preserving the all similarities and a local approach that focuses only on the strongest similarities. We find that the local approach, based on a minimum spanning tree of similarities, produces a better classification and, as observed from strategy simulation, more efficient aspect cluster growing performance in most situations, compared to the global approach of multidimensional scaling. We show that a small but significant proportion of aspect clustering growing cases can be problematic, regardless of the layout algorithm used. We identify the characteristics of these cases and, on this basis, demonstrate a set of novel interactive tools that provide additional semantic cues to aid the user in locating same-aspect documents.
机译:在本文中,我们提出,测试和开发一种新颖的搜索交互模型,以解决与在经典信息检索系统中执行不限成员名额搜索任务相关的两个关键问题:(i)在转变背景下重新构造查询的需求问题的概念,以及(ii)需要在多个单独的结果集中整合相关结果。在我们的模型中,用户仅发出一个高召回查询,然后通过浏览此检索到的文档集的空间语义可视化的静态结构化上下文,执行一系列更具针对性的独特方面搜索。我们的观点是,无监督的空间语义可视化可以自动将检索到的文档分类为两级相关性层次结构。特别是,我们假设任何给定方面示例的局部性都倾向于包含足够比例的相同方面文档,以支持视觉引导的策略来进行集中的,相同方面的搜索(我们称之为方面群集增长策略)。我们研究了从主题和来自TREC测试集合的相关性判断得出的三种情况下的空间语义分类和潜在方面聚类的增长性能。我们的分析表明,预期的分类可以用通过简单向量空间文本分析程序计算出的文档相似性创建的空间语义结构来表示。我们比较了两种截然相反的布局优化方法:一种侧重于保留所有相似性的全局方法和一种侧重于最强相似性的局部方法。我们发现,与基于多维规模化的全局方法相比,基于最小相似度的最小生成树的局部方法可以产生更好的分类,并且从策略仿真中可以看出,在大多数情况下,方面簇的性能在大多数情况下都更为有效。我们显示,无论使用哪种布局算法,一小部分但很大比例的方面聚类增长情况都是有问题的。我们确定了这些案例的特征,并在此基础上演示了一套新颖的交互式工具,这些工具提供了附加的语义提示,以帮助用户查找相同方面的文档。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号