首页> 外文OA文献 >Data fusion methodologies for multisensor aircraft navigation systems
【2h】

Data fusion methodologies for multisensor aircraft navigation systems

机译:多传感器飞机导航系统的数据融合方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The thesis covers data fusion for aircraft navigation systems in distributed sensor systems. Data fusion methodologies are developed for the design, development, analysis and simulation of multisensor aircraft navigation systems. The problems of sensor failure detection and isolation (FDI), distributed data fusion algorithms and inertial state integrity monitoring in inertial network systems are studied. Various existing integrated navigation systems and Kalman filter architectures are reviewed and a new generalised multisensor data fusion model is presented for the design and development of multisensor navigation systems. Normalised navigation algorithms are described for data fusion filter design of inertial network systems. A normalised measurement model of skewed redundant inertial measurement units (SRIMU) is presented and performance criteria are developed to evaluate optimal configurations of SRIMUs in terms of the measurement accuracy and FDI capability. Novel sensor error compensation filters are designed for the correction of SRIMU measurement errors. Generalised likelihood ratio test (GLRT) methods are improved to detect various failure modes, including short time and sequential moving-window GLRT algorithms. State-identical and state-associated fusion algorithms are developed for two forms of distributed sensor network systems. In particular, innovative inertial network sensing models and inertial network fusion algorithms are developed to provide estimates of inertial vector states and similar node states. Fusion filter-based integrity monitoring algorithms are also presented to detect network sensor failures and to examine the consistency of node state estimates in the inertial network system. The FDI and data fusion algorithms developed in this thesis are tested and their performance is evaluated using a multisensor software simulation system developed during this study programme. The moving-window GLRT algorithms for optimal SRIMU configurations are shown to perform well and are also able to detect jump and drift failures in an inertial network system. It is concluded that the inertial network fusion algorithms could be used in a low-cost inertial network system and are capable of correctly estimating the inertial vector states and the node states.
机译:本文涵盖了分布式传感器系统中飞机导航系统的数据融合。为多传感器飞机导航系统的设计,开发,分析和仿真开发了数据融合方法。研究了惯性网络系统中传感器故障检测与隔离(FDI),分布式数据融合算法以及惯性状态完整性监控等问题。审查了各种现有的集成导航系统和卡尔曼滤波器体系结构,并提出了一种新的广义多传感器数据融合模型,用于多传感器导航系统的设计和开发。描述了用于惯性网络系统的数据融合滤波器设计的归一化导航算法。提出了斜度冗余惯性测量单元(SRIMU)的标准化测量模型,并制定了性能标准,以根据测量精度和FDI能力评估SRIMU的最佳配置。新型传感器误差补偿滤波器专为校正SRIMU测量误差而设计。改进了通用似然比测试(GLRT)方法以检测各种故障模式,包括短时间和顺序移动窗口GLRT算法。针对两种形式的分布式传感器网络系统开发了状态相同和状态相关的融合算法。特别是,开发了创新的惯性网络传感模型和惯性网络融合算法,以提供惯性矢量状态和类似节点状态的估计。还提出了基于融合滤波器的完整性监控算法,以检测网络传感器故障并检查惯性网络系统中节点状态估计的一致性。测试了本文开发的FDI和数据融合算法,并使用了在此研究计划中开发的多传感器软件仿真系统对它们的性能进行了评估。用于最佳SRIMU配置的移动窗口GLRT算法显示出良好的性能,并且还能够检测惯性网络系统中的跳跃和漂移故障。结论是,惯性网络融合算法可以用于低成本的惯性网络系统中,并且能够正确估计惯性矢量状态和节点状态。

著录项

  • 作者

    Allerton David J; Jia Huamin;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号