首页> 外文OA文献 >Data fusion methodologies for multisensor aircraft navigation systems
【2h】

Data fusion methodologies for multisensor aircraft navigation systems

机译:多传感器飞机导航系统的数据融合方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The thesis covers data fusion for aircraft navigation systems in distributed sensorsystems. Data fusion methodologies are developed for the design, development,analysis and simulation of multisensor aircraft navigation systems. The problems ofsensor failure detection and isolation (FDI), distributed data fusion algorithms andinertial state integrity monitoring in inertial network systems are studied.Various existing integrated navigation systems and Kalman filter architectures arereviewed and a new generalised multisensor data fusion model is presented for thedesign and development of multisensor navigation systems. Normalised navigationalgorithms are described for data fusion filter design of inertial network systems.A normalised measurement model of skewed redundant inertial measurement units(SRIMU) is presented and performance criteria are developed to evaluate optimalconfigurations of SRIMUs in terms of the measurement accuracy and FDI capability.Novel sensor error compensation filters are designed for the correction of SRIMUmeasurement errors. Generalised likelihood ratio test (GLRT) methods are improvedto detect various failure modes, including short time and sequential moving-windowGLRT algorithms.State-identical and state-associated fusion algorithms are developed for two forms ofdistributed sensor network systems. In particular, innovative inertial network sensingmodels and inertial network fusion algorithms are developed to provide estimates ofinertial vector states and similar node states. Fusion filter-based integrity monitoringalgorithms are also presented to detect network sensor failures and to examine theconsistency of node state estimates in the inertial network system.The FDI and data fusion algorithms developed in this thesis are tested and theirperformance is evaluated using a multisensor software simulation system developedduring this study programme. The moving-window GLRT algorithms for optimalSRIMU configurations are shown to perform well and are also able to detect jumpand drift failures in an inertial network system. It is concluded that the inertialnetwork fusion algorithms could be used in a low-cost inertial network system andare capable of correctly estimating the inertial vector states and the node states.
机译:本文涵盖了分布式传感器系统中飞机导航系统的数据融合。数据融合方法被开发用于多传感器飞机导航系统的设计,开发,分析和仿真。研究了惯性网络系统中的传感器故障检测与隔离(FDI),分布式数据融合算法和惯性完整性监控等问题。回顾了现有的各种集成导航系统和卡尔曼滤波器体系结构,提出了一种新的广义多传感器数据融合模型进行设计和开发。多传感器导航系统。描述了用于惯性网络系统的数据融合滤波器设计的归一化导航算法,提出了偏斜冗余惯性测量单元(SRIMU)的归一化测量模型,并开发了性能标准以评估SRIMU在测量精度和FDI能力方面的最佳配置。传感器误差补偿滤波器设计用于校正SRIMU测量误差。改进了通用似然比测试(GLRT)方法来检测各种故障模式,包括短时间和顺序移动窗口GLRT算法。针对两种形式的分布式传感器网络系统,开发了状态相同和状态相关的融合算法。特别是,开发了创新的惯性网络传感模型和惯性网络融合算法,以提供惯性矢量状态和相似节点状态的估计。提出了基于融合滤波器的完整性监测算法,以检测网络传感器故障并检验惯性网络系统中节点状态估计的一致性。本文对本文开发的FDI和数据融合算法进行了测试,并使用多传感器软件仿真系统评估了它们的性能。在本研究计划期间发展。用于最优SRIMU配置的移动窗口GLRT算法显示出良好的性能,并且还能够检测惯性网络系统中的跳跃和漂移故障。得出的结论是,惯性网络融合算法可用于低成本的惯性网络系统中,并且能够正确估计惯性矢量状态和节点状态。

著录项

  • 作者

    Jia Huamin;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号