首页> 外文OA文献 >Polynomial distribution functions on bounded closed intervals
【2h】

Polynomial distribution functions on bounded closed intervals

机译:有界闭区间上的多项式分布函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The thesis explores several topics, related to polynomial distribution functions and their densities on [0,1]M, including polynomial copula functions and their densities. The contribution of this work can be subdivided into two areas. - Studying the characterization of the extreme sets of polynomial densities and copulas, which is possible due to the Choquet theorem. - Development of statistical methods that utilize the fact that the density is polynomial (which may or may not be an extreme density). With regard to the characterization of the extreme sets, we first establish that in all dimensions the density of an extreme distribution function is an extreme density. As a consequence, characterizing extreme distribution functions is equivalent to characterizing extreme densities, which is easier analytically. We provide the full constructive characterization of the Choquet-extreme polynomial densities in the univariate case, prove several necessary and sufficient conditions for the extremality of densities in arbitrary dimension, provide necessary conditions for extreme polynomial copulas, and prove characterizing duality relationships for polynomial copulas. We also introduce a special case of reflexive polynomial copulas. Most of the statistical methods we consider are restricted to the univariate case. We explore ways to construct univariate densities by mixing the extreme ones, propose non-parametric and ML estimators of polynomial densities. We introduce a new procedure to calibrate the mixing distribution and propose an extension of the standard method of moments to pinned density moment matching. As an application of the multivariate polynomial copulas, we introduce polynomial coupling and explore its application to convolution of coupled random variables. The introduction is followed by a summary of the contributions of this thesis and the sections, dedicated first to the univariate case, then to the general multivariate case, and then to polynomial copula densities. Each section first presents the main results, followed by the literature review.
机译:本文探讨了与[0,1] M上的多项式分布函数及其密度有关的几个主题,包括多项式copula函数及其密度。这项工作的贡献可以分为两个领域。 -研究多项式密度和系数的极端集合的特征,这可以归因于Choquet定理。 -利用密度为多项式(可能是也可能不是极端密度)的事实开发统计方法。关于极端集的特征,我们首先确定在所有维度上,极端分布函数的密度是极限密度。结果,表征极端分布函数等效于表征极端密度,这在分析上更容易。我们提供了单变量情况下Choquet极值多项式密度的完整构造特征,证明了任意维度上密度极值的几个充要条件,为极值多项式系提供了必要条件,并证明了多项式系的对偶关系。我们还介绍了自反多项式系数的一种特殊情况。我们考虑的大多数统计方法仅限于单变量情况。我们探索了通过混合极端密度来构造单变量密度的方法,提出了多项式密度的非参数和ML估计。我们介绍了一种校准混合分布的新程序,并提出了将标准矩量方法扩展到固定密度矩量匹配的方法。作为多元多项式系的一个应用,我们介绍了多项式耦合,并探讨了其在耦合随机变量卷积中的应用。在引言之后,总结了本论文和各部分的贡献,首先讨论了单变量情况,然后讨论了一般的多元情况,然后讨论了多项式的copula密度。每个部分首先介绍主要结果,然后是文献综述。

著录项

  • 作者

    Chirikhin Andrey;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号