首页> 外文OA文献 >Proof verification within set theory
【2h】

Proof verification within set theory

机译:集合论中的证明验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The proof-checker ÆtnaNova, aka Ref, processes proof scenarios to establish whether or not they are formally correct. A scenario, typically written by a working mathematician or computer scientist, consists of definitions, theorem statements and proofs of the theorems. There is a construct enabling one to package definitions and theorems into reusable proofware components. The deductive system underlying Ref mainly first-order, but with an important second-order feature: the packaging construct just mentioned is a variant of the Zermelo-Fraenkel set theory, ZFC, with axioms of regularity and global choice. This is apparent from the very syntax of the language, borrowing from the set-theoretic tradition many constructs, e.g. abstraction terms. Much of Ref’s naturalness, comprehensiveness, and readability, stems from this foundation; much of its effectiveness, from the fifteen or so built-in mechanisms, tailored on ZFC, which constitute its inferential armory. Rather peculiar aspects of Ref, in comparison to other proof-assistants (Mizar to mention one), are that Ref relies only marginally on predicate calculus and that types play no significant role, in it, as a foundation.udThis talk illustrates the state-of-the-art of proof-verification technology based on set theory, by reporting on ‘proof-pearl’ scenarios currently under development and by examining some small-scale, yet significant, examples of use of Ref. The choice of examples will reflect today’s tendency to bring Ref’s scenarios closer to algorithm-correctness verification, mainly referred to graphs. The infinity axiom rarely plays a role in applications to algorithms; nevertheless the availability of all resources of ZFC is important in general: for example, relatively unsophisticated argumentations enter into the proof that the Davis-Putnam-Logemann-Loveland satisfiability test is correct, but in order to prove the compactness of propositional logic or Stone’s representation theorem for Boolean algebras one can fruitfully resort to Zorn’s lemma.
机译:校对员ÆtnaNova(又名Ref)处理校对方案,以确定其形式正确与否。通常由工作的数学家或计算机科学家编写的场景,由定义,定理陈述和定理证明组成。有一种结构可以将定义和定理打包到可重用的证明软件组件中。 Ref的演绎系统主要是一阶的,但具有重要的二阶特征:刚才提到的包装结构是Zermelo-Fraenkel集理论ZFC的变体,具有规律性和全局选择公理。从语言的语法上可以明显看出这一点,它借鉴了集合理论的传统,例如抽象术语。 Ref的自然性,全面性和可读性在很大程度上是基于此基础;它的大部分功效来自于ZFC量身定制的15种左右内置机制,构成了其推论性武器库。与其他证明助手(Mizar提到的一个)相比,Ref的特殊方面是Ref仅略微依赖谓词演算,并且类型在其中没有重要作用,作为基础。集合论的最先进的证明验证技术,方法是报告当前正在开发的“证明珍珠”方案,并研究Ref的一些小规模但重要的使用示例。示例的选择将反映出当今将Ref的场景更接近算法正确性验证(通常称为图形)的趋势。无限公理很少在算法的应用中起作用;尽管如此,ZFC的所有资源的可用性通常都很重要:例如,相对简单的论证就证明了戴维斯-普特南-洛格曼-洛夫兰可满足性测试是正确的,但是为了证明命题逻辑或斯通表示的紧凑性布尔代数的一个定理可以有效地求助于Zorn的引理。

著录项

  • 作者

    Omodeo Eugenio;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号