首页> 外文OA文献 >Meningioma classification using an adaptive discriminant wavelet packet transform
【2h】

Meningioma classification using an adaptive discriminant wavelet packet transform

机译:使用自适应判别小波包变换进行脑膜瘤分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Meningioma subtypes classification is a real world problem from the domain of histological image analysis that requires new methods for its resolution. Computerised histopathology presents a whole new set of problems and introduces new challenges in image classification. High intra-class variation and low inter-class differences in textures is often an issue in histological image analysis problems such as Meningioma subtypes classification. In this thesis, we present an adaptive wavelets based technique that adapts to the variation in the texture of meningioma samples and provides high classification accuracy results. The technique provides a mechanism for attaining an image representation consisting of various spatial frequency resolutions that represent the image and are referred to as subbands. Each subband provides different information pertaining to the texture in the image sample. Our novel method, the Adaptive Discriminant Wavelet Packet Transform (ADWPT), provides a means for selecting the most useful subbands and hence, achieves feature selection. It also provides a mechanism for ranking features based upon the discrimination power of a subband. The more discriminant a subband, the better it is for classification. The results show that high classification accuracies are obtained by selecting subbands with high discrimination power. Moreover, subbands that are more stable i.e. have a higher probability of being selected provide better classification accuracies. Stability and discrimination power have been shown to have a direct relationship with classification accuracy. Hence, ADWPT acquires a subset of subbands that provide a highly discriminant and robust set of features for Meningioma subtype classification. Classification accuracies obtained are greater than 90% for most Meningioma subtypes. Consequently, ADWPT is a robust and adaptive technique which enables it to overcome the issue of high intra-class variation by statistically selecting the most useful subbands for meningioma subtype classification. It overcomes the issue of low inter-class variation by adapting to texture samples and extracting the subbands that are best for differentiating between the various meningioma subtype textures.
机译:脑膜瘤亚型分类是组织学图像分析领域的一个现实问题,需要新的方法对其进行解析。计算机组织病理学提出了一系列全新的问题,并在图像分类中引入了新的挑战。在组织学图像分析问题(例如脑膜瘤亚型分类)中,纹理内的高类别内变异和低类别间差异通常是一个问题。在本文中,我们提出了一种基于自适应小波的技术,该技术适应于脑膜瘤样本纹理的变化,并提供了较高的分类精度结果。该技术提供了一种用于获得由表示图像并称为子带的各种空间频率分辨率组成的图像表示的机制。每个子带提供与图像样本中纹理有关的不同信息。我们的新方法,自适应判别小波包变换(ADWPT),提供了一种选择最有用子带的方法,因此可以实现特征选择。它还提供了一种基于子带的鉴别能力对特征进行排名的机制。子带的判别越多,则分类越好。结果表明,通过选择具有较高辨别力的子带可以获得较高的分类精度。而且,更稳定的子带,即具有较高的被选择概率,提供了更好的分类精度。稳定性和判别力已显示与分类准确性有直接关系。因此,ADWPT获取子带的子集,该子带为脑膜瘤亚型分类提供了高度可区分和强大的功能。对于大多数脑膜瘤亚型,获得的分类准确性均高于90%。因此,ADWPT是一种强大的自适应技术,通过统计地选择用于脑膜瘤亚型分类的最有用的子带,使其能够克服类内变异高的问题。通过适应纹理样本并提取最能区分各种脑膜瘤亚型纹理的子带,它克服了类别间变异低的问题。

著录项

  • 作者

    Qureshi Hammad A;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号