首页> 外文OA文献 >On the Use of Formative Measurement Specifications in Structural Equation Modeling: A Monte Carlo Simulation Study to Compare Covariance-Based and Partial Least Squares Model Estimation Methodologies
【2h】

On the Use of Formative Measurement Specifications in Structural Equation Modeling: A Monte Carlo Simulation Study to Compare Covariance-Based and Partial Least Squares Model Estimation Methodologies

机译:关于结构方程模型中形成测量规范的使用:基于协方差和偏最小二乘模型估计方法的蒙特卡罗模拟研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The broader goal of this paper is to provide social researchers with some analytical guidelines when investigating structural equation models (SEM) with predominantly a formative specification. This research is the first to investigate the robustness and precision of parameter estimates of a formative SEM specification. Two distinctive scenarios (normal and non-normal data scenarios) are compared with the aid of a Monte Carlo simulation study for various covariance-based structural equation modeling (CBSEM) estimators and various partial least squares path modeling (PLS-PM) weighting schemes. Thus, this research is also one of the first to compare CBSEM and PLS-PM within the same simulation study. We establish that the maximum likelihood (ML) covariance-based discrepancy function provides accurate and robust parameter estimates for the formative SEM model under investigation when the methodological assumptions are met (e.g., adequate sample size, distributional assumptions, etc.). Under these conditions, ML-CBSEM outperforms PLS-PM. We also demonstrate that the accuracy and robustness of CBSEM decreases considerably when methodological requirements are violated, whereas PLS-PM results remain comparatively robust, e.g. irrespective of the data distribution. These findings are important for researchers and practitioners when having to choose between CBSEM and PLS-PM methodologies to estimate formative SEM in their particular research situation.
机译:本文的更广泛的目标是为社会研究人员在调查主要具有形成性规范的结构方程模型(SEM)时提供一些分析指导。这项研究是第一个研究形成性SEM规范的参数估计的鲁棒性和精度。借助蒙特卡罗模拟研究,针对基于协方差的各种结构方程模型(CBSEM)估计器和各种偏最小二乘路径模型(PLS-PM)加权方案,对两种不同的情况(正常和非正常数据情况)进行了比较。因此,该研究也是在同一模拟研究中最早比较CBSEM和PLS-PM的研究之一。我们确定,当满足方法学假设(例如,足够的样本量,分布假设等)时,基于最大似然(ML)协方差的差异函数可为正在研究的形成性SEM模型提供准确而可靠的参数估计。在这些条件下,ML-CBSEM的性能优于PLS-PM。我们还证明,违反方法要求时CBSEM的准确性和鲁棒性会大大降低,而PLS-PM结果仍然保持相对鲁棒性,例如不论数据分布如何。当必须在CBSEM和PLS-PM方法之间进行选择以评估其特殊研究情况下的形成性SEM时,这些发现对研究人员和从业人员而言非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号