首页> 外文OA文献 >An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources
【2h】

An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources

机译:用于递归非线性流量预测和mpEG视频源建模的自适应神经网络模型

摘要

Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates t he network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.
机译:多媒体服务,尤其是数字视频,有望成为通过通信网络(例如基于Internet协议(IP)的网络)传输的主要流量组件。因此,为了使网络有效运行,需要对这些服务进行流量表征和建模。生成的模型可以在网络运行阶段(网络流量建模)用作流量速率预测器,或者在网络设计阶段(网络流量建模)用作视频发生器以估计网络资源。在本文中,提出了一种涵盖这两种情况的自适应神经网络架构。该方案基于有效的递归权重估计算法,该算法使网络响应适应当前条件。特别地,该算法更新网络权重,使得1)自适应之后的网络输出大约等于当前比特率(当前流量统计),以及2)在获得的网络知识上提供最小的降级。可以证明,所提出的自适应神经网络体系结构模拟了类似于线性情况下使用的表示法的递归非线性自回归模型(RNAR)。与传统的再训练方案相比,该算法在跟踪流量速率方面具有较低的计算复杂度和较高的效率。此外,针对离线流量建模的问题,提出了一种新颖的相关机制,用于捕获实际MPEG视频流量的突发性。该模型的性能是使用多个长时间的真实MPEG编码视频源进行评估的,并与两种情况下使用的其他线性/非线性技术进行了比较。结果表明,所提出的自适应神经网络体系结构比其他经过检验的技术具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号