首页> 外文OA文献 >A quantum behaved particle swarm approach to multi-objective optimization
【2h】

A quantum behaved particle swarm approach to multi-objective optimization

机译:一种量子行为粒子群算法求解多目标优化问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many real-world optimization problems have multiple objectives that have to be optimized simultaneously. Although a great deal of effort has been devoted to solve multi-objective optimization problems, the problem is still open and the related issues still attract significant research efforts. Quantum-behaved Particle Swarm Optimization (QPSO) is a recently proposed population based metaheuristic that relies on quantum mechanics principles. Since its inception, much effort has been devoted to develop improved versions of QPSO designed for single objective optimization. However, many of its advantages are not yet available for multi-objective optimization. In this thesis, we develop a new framework for multi-objective problems using QPSO. The contribution of the work is threefold. First a hybrid leader selection method has been developed to compute the attractor of a given particle. Second, an archiving strategy has been proposed to control the growth of the archive size. Third, the developed framework has been further extended to handle constrained optimization problems. A comprehensive investigation of the developed framework has been carried out under different selection, archiving and constraint handling strategies. The developed framework is found to be a competitive technique to tackle this type of problems when compared against the state-of-the-art methods in multi-objective optimization.
机译:许多现实世界中的优化问题都有多个目标必须同时进行优化。尽管已经致力于解决多目标优化问题的大量努力,但是该问题仍然是开放的,并且相关问题仍然吸引着大量的研究工作。量子行为粒子群优化(QPSO)是最近提出的基于量子力学的基于人口的元启发式算法。自成立以来,已投入大量精力来开发为单目标优化设计的QPSO改进版本。但是,它的许多优点尚未可用于多目标优化。在本文中,我们使用QPSO开发了一个用于多目标问题的新框架。这项工作的贡献是三方面的。首先,已经开发出一种混合的前导选择方法来计算给定粒子的吸引子。其次,已提出一种归档策略来控制档案大小的增长。第三,已开发的框架已得到进一步扩展以处理约束优化问题。在不同的选择,归档和约束处理策略下,对开发的框架进行了全面的调查。与多目标优化中的最新方法相比,已发现开发的框架是解决此类问题的一种竞争技术。

著录项

  • 作者

    Al Baity Heyam;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号