首页> 外文OA文献 >Modified Fourier-Motzkin Elimination Algorithm for Reducing Systems of Linear Inequalities with Unconstrained Parameters
【2h】

Modified Fourier-Motzkin Elimination Algorithm for Reducing Systems of Linear Inequalities with Unconstrained Parameters

机译:改进的Fourier-motzkin消元算法在无约束参数下简化线性不等式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The need for eliminating redundancies in systems of linear inequalities arises in many applications. In linear programming (LP), one seeks a solution that optimizes a given linear objective function subject to a set of linear constraints, sometimes posed as linear inequalities. Linear inequalities also arise in the context of tensor decomposition. Due to the lack of uniqueness in higher-order tensor decomposition, non-negativity constraints are imposed on the decomposition factors, yielding systems of linear inequalities. Eliminating redundancies in such systems can reduce the number of computations, and hence improve computation times in applications.Current techniques for eliminating redundant inequalities are not viable in higher dimensions. As an alternative we propose a modified version of the Fourier-Motzkin Elimination Algorithm (ModFMEA), implemented in MatLab, to reduce redundancies in a given system of linear constraints over reals posed as linear inequalities. Reduction is obtained, at each orthant containing the solution set, by taking the lower and upper bounds of x_i-normalized inequalities x_i u3e= l and u u3e= x_i respectively, where l and u are linear terms with no occurrence of x_i, for i = 1,2,...,N. The reduced system over the whole solution set can be obtained by taking the union of the reduced system at each orthant.This method eliminates redundancies by retaining a system of linear inequalities that define the set of feasible solutions. It works under the assumption that all of the variables are unconstrained, i.e., variables may take on negative and positive values. Experimental results demonstrate reduction of systems in higher dimensions for both bounded and unbounded solution sets with feasible computational times, and provide important hindsight into its workings that allows us to design an extension of ModFMEA (ExModFMEA) that yields even more reduction.
机译:在许多应用中都需要消除线性不等式系统中的冗余。在线性规划(LP)中,人们寻求一种解决方案,该解决方案会在受到一组线性约束(有时被称为线性不等式)的情况下优化给定的线性目标函数。在张量分解的背景下也会出现线性不等式。由于高阶张量分解缺乏唯一性,因此将非负约束施加于分解因子,从而产生线性不等式的系统。在此类系统中消除冗余可以减少计算数量,从而提高应用程序的计算时间。消除冗余不等式的当前技术在更高维度上不可行。作为替代方案,我们提出了在MatLab中实施的傅里叶-莫兹金消除算法(ModFMEA)的改进版本,以减少给定线性约束系统中相对于以线性不等式为代表的实数的冗余。通过分别取x_i归一化不等式x_i u3e = l和u u3e = x_i的下界和上界,在包含解集的每个正交物体上获得约简,其中l和u是不出现x_i的线性项,对于i = 1,2,...,N。整个解集的简化系统可以通过对每个正割子取简化系统的并集来获得。该方法通过保留定义可行解集的线性不等式系统来消除冗余。它在所有变量不受约束的假设下工作,即变量可以取负值和正值。实验结果表明,在可行的计算时间内,对于有界和无界解决方案集,都可以在更高维度上减少系统,并为该系统的工作提供重要的后见之明,从而使我们能够设计出可扩展性更高的ModFMEA(ExModFMEA)扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号