首页> 外文OA文献 >Progression of RNA-sequencing to single-cell applications
【2h】

Progression of RNA-sequencing to single-cell applications

机译:RNA测序在单细胞应用中的进展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

New methods enable new discoveries. My time as a PhD student has run in parallel with thematuration of the RNA-seq method, and I have used it to discover basic properties of geneexpression and transcriptomes. My part has been bioinformatics – the computer analysis ofbiological data.RNA-seq quantifies gene expression for all genes in one experiment, allowing discoverieswithout prior knowledge, as opposed to single-gene hypothesis testing. When I started my PhD,this was done by microarray followed by qRT-PCR validation, which can be arduous. In contrastto microarrays, RNA-seq quantifies expression with little ambiguity of which gene eachexpression value corresponds to, and in absolute terms. But at the time, data analysis of RNA-seqwas full of unknowns and there were little software available. Nowadays, partly the result of mywork, the data analysis is much less complicated, and RNA-seq can be performed on diminutivesamples, down to single cells, which was not viable using microarrays.My first study (Paper I) used one of the very first RNA-seq datasets to study general features oftranscriptomes, such as mean mRNA length (~1,500 nt) and the number of genes expressed pertissue (~13,000). I also found special features of some tissues: the liver transcriptome isdominated by a few highly expressed gene, brain expresses especially long mRNAs and testisexpresses many more genes than other tissues.Following this tissue RNA-seq study, I evaluated a new library preparation method for single-cellRNA-seq (Paper III), developed before the prevalence of single-cell RNA-seq. I used technicalreplicates to show that the method was accurate and reliable for the more highly expressed genesat single-cell RNA levels, and with input RNA amounts corresponding to >50 cells it produced asgood quality data as bulk RNA-seq. Then the method was applied on melanoma cells isolatedfrom human blood, and I listed surface antigen genes that distinguished these circulating tumourcells from other cells in the blood.This single-cell RNA-seq method was then applied on pre-implantation embryo cells (Paper IV).Using first-generation crosses between two mouse strains, I could separate the expression fromthe maternal and the paternal copies of the genes. I found that 12-24% of the genes express onlyone of their two copies in any given cell, in a random manner that affects almost all the expressedgenes. I also found that the two copies are expressed independently from each other.Finally, I studied Sox transcription factors during neural development (Paper II), combiningRNA-seq and microarray data for different cell types with ChIP-seq data for transcription factorbinding and histone modifications. I found that Sox proteins bind to the enhancers active in thestem cells where the Sox proteins are active, but also to enhancers specific to subsequent cells iniidevelopment. I also found that different Sox factors bind to much the same enhancers, and thatthey can induce histone modifications.In conclusion, my work has advanced the RNA-seq method and increased the understanding oftranscriptional regulation and output.
机译:新方法可以实现新发现。我读博士的时间与RNA-seq方法的完善同时进行,我用它来发现基因表达和转录组的基本特性。我的工作是生物信息学-生物数据的计算机分析。RN​​A-seq可以量化一个实验中所有基因的基因表达,从而允许在没有先验知识的情况下进行发现,这与单基因假设测试相反。当我开始攻读博士学位时,这是通过微阵列然后通过qRT-PCR验证完成的,这可能很艰巨。与微阵列相反,RNA-seq对表达的定量几乎没有歧义,每个表达值对应于绝对绝对值。但是当时,RNA-seq的数据分析充满了未知数,几乎没有可用的软件。如今,部分由于mywork的结果,数据分析变得不那么复杂了,RNA-seq可以在微量样品上进行,甚至可以分离到单个细胞,而使用微阵列是不可行的。我的第一项研究(论文I)使用了一种首先是RNA-seq数据集,用于研究转录组的一般特征,例如平均mRNA长度(约1,500 nt)和在整个组织中表达的基因数(约13,000)。我还发现了某些组织的特殊功能:肝转录组由一些高表达基因控制,脑部表达特别长的mRNA,睾丸比其他组织表达更多的基因。在组织RNA-seq研究之后,我评估了一种新的文库制备方法single-cellRNA-seq(Paper III),在单细胞RNA-seq流行之前开发。我使用技术重复证明了该方法对于单细胞RNA水平上更高表达的基因是准确而可靠的,并且输入RNA的数量相当于> 50个细胞时,它产生的质量数据与大量RNA-seq相当。然后将该方法应用于从人血中分离出的黑色素瘤细胞,我列出了表面抗原基因,将这些循环肿瘤细胞与血液中的其他细胞区分开来。然后将这种单细胞RNA-seq方法应用于植入前的胚胎细胞(论文IV使用两个小鼠品系之间的第一代杂交,我可以将表达与基因的母本和父本副本分开。我发现在任何给定的细胞中,有12-24%的基因仅表达其两个拷贝中的一个,并且以随机方式影响几乎所有表达的基因。最后,我研究了神经发育过程中的Sox转录因子(论文II),将不同细胞类型的RNA-seq和微阵列数据与用于转录因子结合和组蛋白修饰的ChIP-seq数据结合在一起。我发现Sox蛋白与在Sox蛋白活跃的干细胞中活跃的增强子结合,而且还与随后发育中的细胞特异的增强子结合。我还发现,不同的Sox因子与相同的增强子结合,并且它们可以诱导组蛋白修饰。总之,我的工作改进了RNA-seq方法并增加了对转录调控和输出的理解。

著录项

  • 作者

    Ramsköld Daniel;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号