首页> 外文OA文献 >Forecasting DAX Volatility: A Comparison of Time Series Models and Implied Volatilities
【2h】

Forecasting DAX Volatility: A Comparison of Time Series Models and Implied Volatilities

机译:预测DAX波动率:时间序列模型和隐含波动率的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study provides a comprehensive comparison of different forecasting approaches for the German stock market. Additionally, this thesis presents an application of the MCS approach to evaluate DAX volatility forecasts based on high-frequency data. Furthermore, the effects of the 2008 financial crisis on the prediction of DAX volatility are analysed.The empirical analysis is based on data that contain all recorded transactions of DAX options and DAX futures traded on the EUREX from January 2002 to December 2009. The volatility prediction models employed in this study to forecast DAX volatility are selected based on the results of the general features of the forecasting models, and the analysis of the considered DAX time series. Within the class of time series models, the GARCH, the Exponential GARCH (EGARCH), the ARFIMA, and the Heterogeneous Autoregressive (HAR) model are chosen to fit the DAX return and realised volatility series. Additionally, the Britten-Jones and Neuberger (2000) approach is applied to produce DAX implied volatility forecasts because it is based on a broader information set than the BS model. Finally, the BS model is employed as a benchmark model in this study.As the empirical analysis in this study demonstrates that DAX volatility changes considerably over the long sample period, it investigates whether structural breaks induce long memory effects. The effects are separately analysed by performing different structural break tests for the prediction models. A discussion of the impact on the applied forecasting methodology, and how it is accounted for, is also presented. Based on the MCS approach, the DAX volatility forecasts are separately evaluated for the full sample and the subperiod that excludes the two most volatile months of the financial crisis. Because the objective of this work is to provide information to investment and risk managers regarding which forecasting method delivers superior DAX volatility forecasts, the volatilities are predicted for one day, two weeks, and one month. Finally, the evaluation results are compared with previous findings in the literature for each forecast horizon.
机译:这项研究提供了德国股票市场不同预测方法的全面比较。此外,本文提出了一种MCS方法在基于高频数据评估DAX波动率预测中的应用。此外,分析了2008年金融危机对DAX波动率预测的影响。实证分析基于包含2002年1月至2009年12月在EUREX上交易的所有DAX期权和DAX期货交易记录的数据。基于预测模型的一般特征的结果以及对所考虑的DAX时间序列的分析,选择了本研究中用于预测DAX波动的模型。在时间序列模型类别中,选择了GARCH,指数GARCH(EGARCH),ARFIMA和异构自回归(HAR)模型以适合DAX收益率和已实现的波动率序列。此外,Britten-Jones和Neuberger(2000)方法被用于产生DAX隐含波动率预测,因为它基于比BS模型更广泛的信息集。最后,将BS模型用作本研究的基准模型。由于本研究的实证分析表明,DAX的挥发性在较长的采样期间内发生了相当大的变化,因此研究了结构性断裂是否会引起较长的记忆效应。通过对预测模型执行不同的结构破坏测试,分别分析了影响。还介绍了对应用的预测方法的影响及其计算方法。基于MCS方法,将分别评估完整样本和不包括金融危机两个最不稳定月份的子周期的DAX波动率预测。因为这项工作的目的是向投资和风险管理人员提供有关哪种预测方法可以提供出色的DAX波动率预测的信息,所以可以预测一天,两周和一个月的波动率。最后,将评估结果与文献中每个预测范围的先前发现进行比较。

著录项

  • 作者

    Weiß Harald;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号