首页> 外文OA文献 >Improving Vehicle Trip Generation Estimations for Urban Contexts: A Method Using Household Travel Surveys to Adjust ITE Trip Generation Rates
【2h】

Improving Vehicle Trip Generation Estimations for Urban Contexts: A Method Using Household Travel Surveys to Adjust ITE Trip Generation Rates

机译:改善城市环境的车辆出行估计:一种利用家庭旅行调查来调整ITE出行率的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this research is to develop and test a widely available, ready-to-use method for adjusting the Institute of Transportation Engineers (ITE) Trip Generation Handbook vehicle trip generation estimates for urban context using regional household travel survey data. The ITE Handbook has become the predominant method for estimating vehicle trips generated by different land uses or establishment, providing a method for data collection and vehicle trip estimation based on the size of the development (e.g. gross square footage, number of employees, number of dwelling units). These estimates are used in traffic impact analysis to assess the amount of impact the development will have on nearby transportation facilities and, the corresponding charges for mitigating the developmentu27s negative impacts, with roadway expansions, added turning bays, additional parking or traffic signalization, for example.The Handbook is often criticized, however, for its inability to account for variations in travel modes across urban contexts. For more than fifty years, ITE has collected suburban, vehicle-oriented data on trip generation for automobiles only. Despite the provision of warnings against application in urban areas, local governments continue to require the use of the ITE Handbook across all area-types. By over predicting vehicle traffic to developments in urban developments, developments may be overcharged to mitigate these developments locating in urban environments despite the lower automobile mode shares, discouraging infill development or densification. When ITEu27s Trip Generation Handbook overestimates the vehicle impact of a development, facilities are also overbuilt for the automobile traffic and diminishing the use of alternative modes. When ITEu27s TGH underestimates this impact, adjacent facilities may become oversaturated with traffic, pushing cars onto smaller facilities nearby. Currently, there is momentum amongst practitioners to improve these estimation techniques in urban contexts to help support smart growth and better plan for multiple modes.This research developed and tested a method to adjust ITEu27s Handbook vehicle trip generation estimates for changes in transportation mode shares in more urban contexts using information from household travel surveys. Mode share adjustments provide direct reductions to ITEu27s Handbook vehicle trip estimations. Household travel survey (HTS) data from three regions were collected: Portland, Oregon; Seattle, Washington; and Baltimore, Maryland. These data were used to estimate the automobile mode share rates across urban context using three different adjustment methodologies: (A) a descriptive table of mode shares across activity density ranges, (B) a binary logistic regression that includes a built environment description of urban context with the best predictive power, and (C) a binary logistic regression that includes a built environment description of urban context with high predictive power and land use policy-sensitivity. Each of these three methods for estimating the automobile mode share across urban context were estimated for each of nine land use categories, resulting in nine descriptive tables (Adjustment A) and eighteen regressions (Adjustments B and C). Additionally, a linear regression was estimated to predict vehicle occupancy rates across urban contexts for each of nine land use categories.195 independently collected establishment-level vehicle trip generation data were collected in accordance with the ITE Handbook to validate and compare the performance of the three adjustment methods and estimations from the Handbook. Six land use categories (out of the nine estimated) were able to be tested. Out of all of the land uses tested and verified, ITEu27s Trip Generation Handbook appeared to have more accurate estimations for land uses that included residential condominiums/townhouses (LUC 230), supermarkets (LUC 850) and quality (sit-down) restaurants (LUC 931). Moderate or small improvements were observed when applying urban context adjustments to mid-rise apartments (LUC 223), high-turnover (sit-down) restaurants (LUC 932). The most substantial improvements occurred at high-rise apartments (LUC 222) and condominiums/townhouses (LUC 232), shopping centers (LUC 820), or coffee/donut (LUC 936) or bread/donut/bagel shops (LUC 939) without drive-through windows. The three methods proposed to estimate automobile mode share provides improvements to the Handbook rates for most infill developments in urban environments.For the land uses analyzed, it appeared a descriptive table of mode shares across activity density provided results with comparable improvements to the results from the more sophisticated binary logistic model estimations. Additional independently collected establishment-level data collections representing more land uses, time periods and time of days are necessary to determine how ITEu27s Handbook performs in other circumstances, including assessing the transferability of the vehicle trip end rates or mode share reductions across regions.
机译:这项研究的目的是开发和测试一种广泛使用的,可立即使用的方法,用于使用区域性家庭旅行调查数据来调整城市环境下的运输工程师协会(ITE)出行记录手册的出行记录估计。 ITE手册已成为估算由不同土地用途或场所产生的车辆出行的主要方法,它提供了一种根据开发规模(例如,总平方英尺,员工人数,住房数量)进行数据收集和车辆出行估计的方法单位)。这些估算值将用于交通影响分析中,以评估开发项目对附近交通设施的影响程度,以及用于减轻开发项目的负面影响的相应费用,包括道路扩展,增加的转弯处,额外的停车位或交通信号灯,但是,由于手册无法解释整个城市环境中出行方式的变化,因此经常受到批评。五十多年来,ITE仅收集了郊区的,以车辆为导向的有关旅行产生的数据。尽管提供了禁止在城市地区应用的警告,但地方政府仍然要求在所有区域类型中使用ITE手册。尽管汽车模式所占份额较低,但通过过度预测车辆交通到城市发展中的发展情况,可能会多收取一些开发费用,以缓解这些位于城市环境中的发展情况,从而不利于填充发展或致密化。当ITEs的《旅行生成手册》高估了开发项目对车辆的影响时,设施也为汽车交通而过度建造,从而减少了替代模式的使用。当ITE的TGH低估了这种影响时,邻近的设施可能会变得交通拥挤,将汽车推向附近的较小设施。当前,从业人员正积极改进城市环境中的这些估算技术,以帮助支持智能增长并更好地规划多种模式。这项研究开发并测试了一种方法,该方法可针对交通模式份额的变化调整ITE手册的车辆出行生成估算在更多城市环境中使用家庭旅行调查的信息。模式份额调整可直接减少ITE u27s手册的车辆行驶估计。收集了来自三个地区的家庭旅行调查(HTS)数据:俄勒冈州波特兰市;华盛顿西雅图;和马里兰州的巴尔的摩。这些数据用于通过三种不同的调整方法来估算城市环境中的汽车模式份额:(A)跨活动密度范围的模式份额描述表,(B)包括城市环境的已构建环境描述的二进制逻辑回归具有最佳的预测能力,以及(C)二进制logistic回归,其中包括对城市环境的构建环境描述,具有较高的预测能力和土地使用政策敏感性。针对九种土地利用类别中的每一种,估计了三种估算城市环境中汽车模式份额的方法,每种方法都得出了九个描述性表(调整A)和十八个回归表(调整B和C)。此外,估计线性回归可预测九种土地利用类别中每种城市环境下的车辆占用率。根据ITE手册收集了195个独立收集的企业级车辆出行生成数据,以验证和比较这三种性能调整方法和手册中的估计。可以测试六种土地利用类别(估计的九种土地类别)。在经过测试和验证的所有土地用途中,ITE u27的《旅行生成手册》似乎对土地用途进行了更准确的估算,包括住宅公寓/排屋(LUC 230),超级市场(LUC 850)和优质(坐下)餐馆(LUC 931)。将城市环境调整应用于中层公寓(LUC 223),高周转率(sit-down)餐厅(LUC 932)时,观察到中等或较小的改善。最显着的改善发生在高层公寓(LUC 222)和公寓/排屋(LUC 232),购物中心(LUC 820)或咖啡/甜甜圈(LUC 936)或面包/甜甜圈/百吉饼店(LUC 939)直通车窗。提议的三种估算汽车模式份额的方法可以改善城市环境中大多数填充物开发的《手册》比率。对于分析的土地用途,它提供了一个描述性表格,涵盖了整个活动密度下的模式份额,并提供了与之相比可比的改进结果。更复杂的二进制逻辑模型估计。额外的独立收集的企业级数据收集,代表更多的土地用途,时间和时间是确定ITE u27s手册在其他情况下的性能所必需的,包括评估跨区域的车辆出行结束率的可转移性或模式份额的减少。

著录项

  • 作者

    Currans Kristina Marie;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号