首页> 外文OA文献 >The Intermediate Value Theorem as a Starting Point for Inquiry-Oriented Advanced Calculus
【2h】

The Intermediate Value Theorem as a Starting Point for Inquiry-Oriented Advanced Calculus

机译:中值定理作为探究式高级微积分的起点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Making the transition from calculus to advanced calculus/real analysis can be challenging for undergraduate students. Part of this challenge lies in the shift in the focus of student activity, from a focus on algorithms and computational techniques to activities focused around definitions, theorems, and proofs. The goal of Realistic Mathematics Education (RME) is to support students in making this transition by building on and formalizing their informal knowledge. There are a growing number of projects in this vein at the undergraduate level, in the areas of abstract algebra (TAAFU: Larsen, 2013; Larsen u26 Lockwood, 2013), differential equations (IO-DE: Rasmussen u26 Kwon, 2007), geometry (Zandieh u26 Rasmussen, 2010), and linear algebra (IOLA: Wawro, et al., 2012). This project represents the first steps in a similar RME-based, inquiry-oriented instructional design project aimed at advanced calculus.The results of this project are presented as three journal articles. In the first article I describe the development of a local instructional theory (LIT) for supporting the reinvention of formal conceptions of sequence convergence, the completeness property of the real numbers, and continuity of real functions. This LIT was inspired by Cauchyu27s proof of the Intermediate Value Theorem, and has been developed and refined using the instructional design heuristics of RME through the course of two teaching experiments. I found that a proof of the Intermediate Value Theorem was a powerful context for supporting the reinvention of a number of the core concepts of advanced calculus.The second article reports on two studentsu27 reinventions of formal conceptions of sequence convergence and the completeness property of the real numbers in the context of developing a proof of the Intermediate Value Theorem (IVT). Over the course of ten, hour-long sessions I worked with two students in a clinical setting, as these students collaborated on a sequence of tasks designed to support them in producing a proof of the IVT. Along the way, these students conjectured and developed a proof of the Monotone Convergence Theorem. Through this development I found that student conceptions of completeness were based on the geometric representation of the real numbers as a number line, and that the development of formal conceptions of sequence convergence and completeness were inextricably intertwined and supported one another in powerful ways.The third and final article takes the findings from the two aforementioned papers and translates them for use in an advanced calculus classroom. Specifically, Cauchyu27s proof of the Intermediate Value Theorem is used as an inspiration and touchstone for developing some of the core concepts of advanced calculus/real analysis: namely, sequence convergence, the completeness property of the real numbers, and continuous functions. These are presented as a succession of student investigations, within the context of students developing their own formal proof of the Intermediate Value Theorem.
机译:从微积分到高级微积分/实物分析的过渡对于本科生而言可能是具有挑战性的。这一挑战的一部分在于学生活动重点的转移,从对算法和计算技术的关注转向对定义,定理和证明的关注。现实数学教育(RME)的目标是通过建立和正规化他们的非正式知识来支持学生进行这种过渡。在本科层次上,越来越多的项目涉及抽象代数(TAAFU:Larsen,2013; Larsen u26 Lockwood,2013),微分方程(IO-DE:Rasmussen u26 Kwon,2007)领域。 ,几何(Zandieh u26 Rasmussen,2010)和线性代数(IOLA:Wawro等人,2012)。该项目代表了类似的基于RME,面向查询的教学设计项目的第一步,该项目针对高级微积分。该项目的结果以三篇期刊文章的形式呈现。在第一篇文章中,我描述了一种本地教学理论(LIT)的发展,该理论支持对序列收敛的形式化概念,实数的完整性和实函数的连续性的重塑。此LIT的灵感来自考奇的中值定理证明,并通过两个教学实验的过程,使用RME的教学设计启发法进行了开发和完善。我发现中间值定理的证明是支持重造许多高级微积分核心概念的有力前提。第二篇文章报道了两名学生对序列收敛形式概念和完整性完整性的重塑。在开发中间值定理(IVT)证明的背景下的实数。在十个小时的课程中,我与两个学生在临床环境中一起工作,因为这些学生共同完成了一系列任务,以支持他们制作IVT证明。一路上,这些学生猜出并开发了单调收敛定理的证明。通过这一发展,我发现学生的完整性概念是基于实数作为数字线的几何表示的,并且序列收敛和完整性的形式概念的发展密不可分,并以强有力的方式相互支持。最后一篇文章吸收了上述两篇论文的发现,并将其翻译后用于高级微积分教室。具体来说,柯西的中间值定理证明被用作开发高级演算/实数分析的一些核心概念(即序列收敛,实数的完整性和连续函数)的灵感和试金石。这些是在学生开发自己的中间价值定理的形式证明的背景下,作为一系列学生调查的结果。

著录项

  • 作者

    Strand Stephen Raymond II;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号