首页> 外文OA文献 >Application of Bayesian Analysis to the Doubly Labelled Water Method for Total Energy Expenditure in Humans
【2h】

Application of Bayesian Analysis to the Doubly Labelled Water Method for Total Energy Expenditure in Humans

机译:贝叶斯分析在人均总能量消耗双标水法中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rationale: The doubly labelled water (DLW) method is the reference method for the estimation of free-living total energy expenditure (TEE). In this method, where both ²H and ¹⁸O are employed, different approaches have been adopted to deal with the non-conformity observed regarding the distribution space for the labels being non-coincident with total body water. However, the method adopted can have a significant effect on the estimated TEE. Methods: We proposed a Bayesian reasoning approach to modify an assumed prior distribution for the space ratio using experimental data to derive the TEE. A Bayesian hierarchical approach was also investigated. The dataset was obtained from 59 adults (37 women) who underwent a DLW experiment during which the ²H and ¹⁸O enrichments were measured using isotope ratio mass spectrometry (IRMS). Results: The TEE was estimated at 9925 (9106-11236) [median and interquartile range], 9646 (9167-10540), and 9,638 (9220-10340) kJ·day‾¹ for women and at 13961 (12851-15347), 13353 (12651-15088) and 13211 (12653-14238) kJ·day‾¹ for men, using normalized non-Bayesian, independent Bayesian and hierarchical Bayesian approaches, respectively. A comparison of hierarchical Bayesian with normalized non-Bayesian methods indicated a marked difference in behaviour between genders. The median difference was -287 kJ·day‾¹ for women, and -750 kJ·day‾¹ for men. In men there is an appreciable compression of the TEE distribution obtained from the hierarchical model compared with the normalized non-Bayesian methods (range of TEE 11234 – 15431 kJ·day‾¹ vs 10786 – 18221 kJ·day‾¹). An analogous, yet smaller, compression is seen in women (7081 – 12287 kJ·day‾¹ vs 6989 – 13775 kJ·day‾¹). Conclusions: The Bayesian analysis is an appealing method to estimate TEE during DLW experiments. The principal advantages over those obtained using the classical least-squares method is the generation of potentially more useful estimates of total energy expenditure, and improved handling of outliers and missing data scenarios, particularly if a hierarchical model is used.
机译:理由:双标签水(DLW)方法是估算自由生活总能量消耗(TEE)的参考方法。在这种方法中,当同时使用“ H”和“ O”时,采用了不同的方法来处理关于与全身水分不一致的标签的分配空间所观察到的不合格。但是,采用的方法可能会对估计的TEE产生重大影响。方法:我们提出了一种贝叶斯推理方法,以使用实验数据导出TEE来修改空间比率的假定先验分布。贝叶斯分层方法也进行了研究。该数据集来自59位成年人(37位女性),他们接受了DLW实验,在该实验中,使用同位素比质谱法(IRMS)测量了2H和1O富集。结果:女性的TEE估计为9925(9106-11236),中位数和四分位间距,女性为9646(9167-10540)和9,638(9220-10340)kJ·day¹¹,估计为13961(12851-15347),分别使用归一化的非贝叶斯方法,独立贝叶斯方法和层次贝叶斯方法,分别为13353(12651-15088)和13211(12653-14238)kJ·day‾¹。分级贝叶斯方法与归一化非贝叶斯方法的比较表明,性别之间的行为存在显着差异。女性的中位数差异为-287 kJ·天-1,男性为-750 kJ·天-1。与归一化的非贝叶斯方法相比,男性从分层模型获得的TEE分布有明显的压缩(TEE 11234 – 15431 kJ·天-1与10786 – 18221 kJ·天-1的范围)。在女性中可以看到类似但较小的压力(7081 – 12287 kJ·天-1与6989 – 13775 kJ·天-1)。结论:贝叶斯分析是一种在DLW实验中估算TEE的有吸引力的方法。与使用经典最小二乘法所获得的优点相比,主要优点是可以生成更有用的总能源消耗估算值,并且可以改进对异常值和丢失数据方案的处理,尤其是在使用分层模型的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号