首页> 外文OA文献 >New battery model and state-of-health determination through subspace parameter estimation and state-observer techniques
【2h】

New battery model and state-of-health determination through subspace parameter estimation and state-observer techniques

机译:通过子空间参数估计和状态观测器技术确定新的电池模型和健康状态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes a novel adaptive battery model based on a remapped variant of the well-known Randles' lead-acid model. Remapping of the model is shown to allow improved modeling capabilities and accurate estimates of dynamic circuit parameters when used with subspace parameter-estimation techniques. The performance of the proposed methodology is demonstrated by application to batteries for an all-electric personal rapid transit vehicle from the Urban Light TRAnsport (ULTRA) program, which is designated for use at Heathrow Airport, U. K. The advantages of the proposed model over the Randles' circuit are demonstrated by comparisons with alternative observer/estimator techniques, such as the basic Utkin observer and the Kalman estimator. These techniques correctly identify and converge on voltages associated with the battery state-of-charge (SoC), despite erroneous initial conditions, thereby overcoming problems attributed to SoC drift (incurred by Coulomb-counting methods due to overcharging or ambient temperature fluctuations). Observation of these voltages, as well as online monitoring of the degradation of the estimated dynamic model parameters, allows battery aging (state-of-health) to also be assessed and, thereby, cell failure to be predicted. Due to the adaptive nature of the proposed algorithms, the techniques are suitable for applications over a wide range of operating environments, including large ambient temperature variations. Moreover, alternative battery topologies may also be accommodated by the automatic adjustment of the underlying state-space models used in both the parameter-estimation and observer/estimator stages.
机译:本文介绍了一种基于自适应Randles铅酸模型的重新映射变体的新型自适应电池模型。当与子空间参数估计技术一起使用时,显示出模型的重新映射可以提高建模能力,并能准确估计动态电路参数。拟议方法的性能通过应用于城市轻型运输(ULTRA)计划的全电动个人快速运输车辆的电池中得到证明,该计划指定用于英国希思罗机场。拟议模型比Randles的优势通过与其他观测器/估算器技术(例如基本的Utkin观测器和Kalman估算器)进行比较来演示电路。尽管初始条件有误,但这些技术仍能正确识别并收敛于与电池充电状态(SoC)相关的电压,从而克服了因SoC漂移而引起的问题(由于过度充电或环境温度波动而导致的库仑计数法引起的问题)。观察这些电压,以及在线监测估计的动态模型参数的降级,都可以评估电池老化(健康状态),从而预测电池故障。由于所提出算法的自适应特性,因此该技术适用于包括宽环境温度变化在内的各种工作环境。此外,还可以通过自动调整在参数估计阶段和观察者/估计阶段使用的基础状态空间模型来适应其他电池拓扑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号