In this paper, we introduce a neural network-based shape matching algorithm that uses Johnson Counter codes coupled with chain codes. Shape matching is a fundamental requirement in content-based image retrieval systems. Chain codes describe shapes using sequences of numbers. They are simple and flexible. We couple this power with the efficiency and flexibility of a binary associative-memory neural network. We focus on the implementation details of the algorithm when it is constructed using the neural network. We demonstrate how the binary associative-memory neural network can index and match chain codes where the chain code elements are represented by Johnson codes.
展开▼