首页> 外文OA文献 >Understanding the apparent stator-rotor connections in the rotary ATPase family using coarse-grained computer modeling
【2h】

Understanding the apparent stator-rotor connections in the rotary ATPase family using coarse-grained computer modeling

机译:使用粗粒度计算机建模了解旋转aTpase系列中的明显定子 - 转子连接

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Advances in structural biology, such as cryo-electron microscopy (cryo-EM) have allowed for a number of sophisticated protein complexes to be characterized. However, often only a static snapshot of a protein complex is visualized despite the fact that conformational change is frequently inherent to biological function, as is the case for molecular motors. Computer simulations provide valuable insights into the different conformations available to a particular system that are not accessible using conventional structural techniques. For larger proteins and protein complexes, where a fully atomistic description would be computationally prohibitive, coarse-grained simulation techniques such as Elastic Network Modeling (ENM) are often employed, whereby each atom or group of atoms is linked by a set of springs whose properties can be customized according to the system of interest. Here we compare ENM with a recently proposed continuum model known as Fluctuating Finite Element Analysis (FFEA), which represents the biomolecule as a viscoelastic solid subject to thermal fluctuations. These two complementary computational techniques are used to answer a critical question in the rotary ATPase family; implicit within these motors is the need for a rotor axle and proton pump to rotate freely of the motor domain and stator structures. However, current single particle cryo-EM reconstructions have shown an apparent connection between the stators and rotor axle or pump region, hindering rotation. Both modeling approaches show a possible role for this connection and how it would significantly constrain the mobility of the rotary ATPase family.
机译:结构生物学的进步,例如低温电子显微镜(cryo-EM),已经使许多复杂的蛋白质复合物得以表征。然而,尽管构象变化通常是生物学功能固有的事实,如分子马达的情况,通常通常只能看到蛋白质复合物的静态快照。计算机模拟为使用常规结构技术无法访问的特定系统可用的不同构象提供了宝贵的见解。对于较大的蛋白质和蛋白质复合物,其中完全原子的描述在计算上是令人望而却步的,因此经常采用粗粒度模拟技术,例如弹性网络建模(ENM),其中每个原子或原子组通过一组弹簧连接,这些弹簧的特性可以根据感兴趣的系统进行定制。在这里,我们将ENM与最近提出的称为波动有限元分析(FFEA)的连续模型进行比较,该模型将生物分子表示为受热波动影响的粘弹性固体。这两种互补的计算技术用于回答旋转ATPase家族中的一个关键问题。在这些电动机中所隐含的是需要转子轴和质子泵自由地旋转电动机域和定子结构。但是,当前的单粒子cryo-EM重建显示出定子与转子轴或泵区域之间的明显连接,从而阻碍了旋转。两种建模方法都显示出这种连接的可能作用,以及如何显着限制旋转式ATPase家族的活动性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号