首页> 外文OA文献 >Ultra-Orthogonal Forward Regression Algorithms for the Identification of Non-Linear Dynamic Systems
【2h】

Ultra-Orthogonal Forward Regression Algorithms for the Identification of Non-Linear Dynamic Systems

机译:超正交正演回归算法在非线性动态系统辨识中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new ultra-least squares (ULS) criterion is introduced for system identification. Unlike the standard least squares criterion which is based on the Euclidean norm of the residuals, the new ULS criterion is derived from the Sobolev space norm. The new criterion measures not only the discrepancy between the observed signals and the model prediction but also the discrepancy between the associated weak derivatives of the observed and the model signals. The new ULS criterion possesses a clear physical interpretation and is easy to implement. Based on this, a new Ultra-Orthogonal Forward Regression (UOFR) algorithm is introduced for nonlinear system identification, which includes converting a least squares regression problem into the associated ultra-least squares problem and solving the ultra-least squares problem using the orthogonal forward regression method. Numerical simulations show that the new UOFR algorithm can significantly improve the performance of the classic OFR algorithm.
机译:引入了新的超最小二乘(ULS)准则进行系统识别。与基于残差的欧几里得范数的标准最小二乘法准则不同,新的ULS准则是从Sobolev空间范数得出的。新准则不仅测量观察到的信号与模型预测之间的差异,还测量观察到的与模型信号相关的弱导数之间的差异。新的ULS标准具有清晰的物理解释,易于实施。在此基础上,引入了一种新的用于非线性系统识别的超正交正向回归(UOFR)算法,该算法包括将最小二乘回归问题转换为关联的超最小二乘问题,并使用正交正向求解方法解决超最小二乘问题。回归方法。数值仿真表明,新的UOFR算法可以显着提高经典OFR算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号