首页> 外文期刊>Applied Mathematical Modelling >Identification of the dynamic parametrical model with an iterative orthogonal forward regression algorithm
【24h】

Identification of the dynamic parametrical model with an iterative orthogonal forward regression algorithm

机译:用迭代正交正向回归算法识别动态参数模型

获取原文
获取原文并翻译 | 示例

摘要

In this study, the identification of a Nonlinear Auto-Regressive with exogenous inputs (NARX) model of nonlinear systems, where the physical parameters of interest for the system design appear explicitly as coefficients in the model, is studied. The model is a dynamic parametrical model, referred as the NARX model with parameters of interest for design (NARX-M-for-D). An improved algorithm, known as the Iterative Extended Forward Orthogonal Regression (IEFOR), is proposed to identify the NARX-M-for-D of nonlinear systems. Firstly, a common-structured model, referred to as the "initial model", is established through the traditional Extended Forward Orthogonal Regression (EFOR) algorithm. Then an iterative process is applied to revise the initial model such to produce an improved model of the system, which is referred to as the "common model" in this study. Finally, functional relationships of the common model coefficients are established to determine the NARX-M-for-D of the system. Both the simulation and experimental studies are discussed to illustrate the application of the new algorithm. The results indicate that, by using the IEFOR algorithm, the established model can accurately predict the system out response and remain the merit of efficiency in computation. The new algorithm is expected to be applied in the identification of nonlinear systems in engineering practice. (C) 2018 Elsevier Inc. All rights reserved.
机译:在这项研究中,研究了非线性系统的非线性自回归输入(NARX)模型的识别,其中系统设计所需的物理参数明确显示为模型中的系数。该模型是一个动态参数模型,称为NARX模型,其中包含设计所需的参数(NARX-M-for-D)。提出了一种改进的算法,称为迭代扩展正向正交回归(IEFOR),用于识别非线性系统的NARX-M-for-D。首先,通过传统的扩展正向正交回归(EFOR)算法建立称为“初始模型”的通用结构模型。然后,应用迭代过程修改初始模型,以产生系统的改进模型,在本研究中将其称为“通用模型”。最后,建立通用模型系数的函数关系以确定系统的NARX-M-for-D。讨论了仿真和实验研究,以说明新算法的应用。结果表明,通过使用IEFOR算法,所建立的模型可以准确预测系统输出响应,并保持计算效率。新算法有望在工程实践中应用于非线性系统的辨识。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号