首页> 外文OA文献 >Time-varying system identification using an ultra-orthogonal forward regression and multiwavelet basis functions with applications to EEG
【2h】

Time-varying system identification using an ultra-orthogonal forward regression and multiwavelet basis functions with applications to EEG

机译:使用超正交前向回归和多小波基函数的时变系统识别以及应用于EEG

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new parametric approach is proposed for nonlinear and non-stationary system identification based on a time-varying nonlinear autoregressive with exogenous input (TV-NARX) model. The time-varying coefficients of the TV-NARX model are expanded using multi- wavelet basis functions and the model is thus transformed into a time-invariant regression problem.udAn ultra-orthogonal forward regression (UOFR) algorithm aided by mutual information (MI) is designed to identify a parsimonious model structure and estimate the associated model parameters. The UOFR-MI algorithm which uses not only the observed data themselves but also weak derivatives of the signals is more powerful in model structure detection. The proposed approach combining the advantages of both the basis function expansion method and the UOFR-MI algorithm is proved to be capable of tracking the change of time-varying parameters effectively in both numerical simulations and the real EEG data.
机译:提出了一种基于时变非线性外生输入自回归模型的非线性和非平稳系统参数化方法。使用多小波基函数扩展TV-NARX模型的时变系数,从而将该模型转换为时不变回归问题。 ud基于互信息(MI)的超正交前向回归(UOFR)算法)旨在识别简约的模型结构并估算相关的模型参数。 UOFR-MI算法不仅使用观测数据本身,而且还使用信号的微分导数,在模型结构检测中更强大。所提出的方法结合了基函数扩展方法和UOFR-MI算法的优点,被证明能够在数值模拟和实际EEG数据中有效地跟踪时变参数的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号