首页> 外文OA文献 >A comparative study of artificial neural network architectures for time series prediction of water distribution system flow data
【2h】

A comparative study of artificial neural network architectures for time series prediction of water distribution system flow data

机译:人工神经网络结构在配水系统流量数据时间序列预测中的比较研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many water utility companies are beginning to amass large volumes of data by means of remote sensing of flow, pressure and other variables. For district meter area monitoring there has been increasing interest in using this sensor data for abnormality detection, such as the real-time detection of bursts. Research pilots have explored systems for generating 'smart alarms' and a key requirement is usually a prediction of future time series values. Artificial neural networks have been employed in this capacity, however built in temporal memory in the network architecture (tap delays, feedback etc.) has not been widely explored. In this comparative study, a number of artificial neural network architectures are evaluated for water distribution flow time series prediction, in particular by exploring using temporal memory. These models included multilayer perceptron, mixture density network, time delay network and recurrent network. In addition the mean diurnal cycle (calculated from the data set) was utilised as a baseline prediction. Genetic algorithm optimisation was utilised in some cases to optimise the number of hidden processing elements and the learning rates parameters for the neural network. Two reference data sets are used as a case study originating from typical real world distribution systems and the performance assessed by means of mean absolute error. The results of the study show that of the static networks, the mixture density network is superior for repeatability and insensitivity to parameter settings. Similarly, the recurrent network is generally superior to the time delay network in this capacity. However, the use of either time delays or feedback results in approximately 50% less error than a static network for the best performing networks.
机译:许多自来水公司开始通过遥感流量,压力和其他变量来收集大量数据。对于区域仪表区域监视,越来越多的兴趣将这种传感器数据用于异常检测,例如实时检测突发。研究飞行员已经探索了用于生成“智能警报”的系统,关键要求通常是对未来时间序列值的预测。人工神经网络已经以这种能力被采用,但是尚未广泛地探索网络体系结构中的时间存储器中内置的内容(抽头延迟,反馈等)。在这项比较研究中,评估了许多人工神经网络体系结构来评估水流时间序列预测,特别是通过使用时间记忆进行探索。这些模型包括多层感知器,混合物密度网络,延时网络和递归网络。此外,平均昼夜周期(根据数据集计算)被用作基线预测。在某些情况下,使用遗传算法优化来优化隐藏处理元素的数量和神经网络的学习率参数。使用两个参考数据集作为案例研究,它们来自典型的现实世界分销系统,并通过平均绝对误差评估了性能。研究结果表明,在静态网络中,混合密度网络在重复性和对参数设置的不敏感性方面均表现出色。类似地,循环网络在此能力上通常优于延时网络。但是,对于性能最佳的网络,时间延迟或反馈的使用都会比静态网络减少大约50%的错误。

著录项

  • 作者

    Mounce S.R.;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号