首页> 外文OA文献 >A fully Bayesian approach to shape estimation of objects from tomography data using MFS forward solutions
【2h】

A fully Bayesian approach to shape estimation of objects from tomography data using MFS forward solutions

机译:使用mFs前向解决方案从层析成像数据中对物体进行形状估计的完全贝叶斯方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is possible to characterize the aim of many practical inverse geometric problems as one of identifying the shape of an object within some domain of interest using non-intrusive measurements collected on the boundary of the domain. In the problem considered here the object is a rigid inclusion within a homogeneous background medium of constant conductivity, and the data are potential and current flux measurements made on the boundary of the region. The rigid inclusion is described using a geometric parametrization in terms of a star-shaped object. A Bayesian modelling approach is used to combine data likelihood and prior information, and posterior estimation is based on a Markov chain Monte Carlo algorithm which provides measures of uncertainty, as well as point estimates. This means that the inverse problem is never solved directly, but the cost is that instead the forwar solution must be found many thousands of times. The forward problem is solved using the method of fundamental solutions (MFS) which is an efficient meshless alternative to the more common finite element or boundary element methods. This paper is the first to apply Bayesian modelling to a problem using the MFS, with numerical results demonstrating that for appropriate choices of prior distributions accurate results are possible. Further, it demonstrates that a fully Bayesian approach is possible where all prior smoothing parameters are estimated. It is important to note that the geometric modelling and statistical estimation approach are not limited to this example and hence the general technique can be easily applied to other inverse problems. A great benefit of the approach is that it allows an intuitive model description and directly interpretable output. The methods are illustrated using numerical simulations.
机译:可以将许多实际逆几何问题的目标描述为使用在域边界上收集的非侵入式度量来识别某个感兴趣域内对象的形状之一。在这里考虑的问题中,对象是在恒定电导率的均质本底介质中的刚性夹杂物,数据是在区域边界上进行的电势和电流通量测量。使用几何参数化对星形物体描述了刚性夹杂物。贝叶斯建模方法用于组合数据似然性和先验信息,后验估计基于马尔可夫链蒙特卡洛算法,该算法提供不确定性的度量以及点估计。这意味着反问题永远不会直接解决,但是代价是必须找到成千上万次的前瞻性解决方案。使用基本解法(MFS)解决了前向问题,该方法是较常见的有限元或边界元方法的一种有效的无网格替代方法。本文是第一个使用MFS将贝叶斯模型应用于问题的方法,其数值结果表明,对于适当选择的先验分布,可以得到准确的结果。此外,它表明在估计所有先前平滑参数的情况下,完全贝叶斯方法是可行的。重要的是要注意,几何建模和统计估计方法不限于此示例,因此通用技术可以轻松地应用于其他逆问题。该方法的一个很大好处是它允许直观的模型描述和直接可解释的输出。使用数值模拟说明了这些方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号