首页> 外文OA文献 >A non-stationary system diagnosis using fuzzy pattern recognition. Application to engine knock diagnosis
【2h】

A non-stationary system diagnosis using fuzzy pattern recognition. Application to engine knock diagnosis

机译:基于模糊模式识别的非平稳系统诊断。应用于发动机爆震诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Knock is a well-known problem for spark-ignition engine manufacturers . Knock detection helps achieve the best compromiseudbetween increasing engine efficiency, fuel consumption and present requirements with regard to exhaust emission legislation .udThe ignition timing is usually controlled so that knock never occurs even with fuel quality changes . The advantage of a knockuddetection method is to work within close range of knocking conditions but avoid its occurrence . The purpose of our study consists inudhighlighting several knock intensities from block vibration signals provided by an accelerometer. Our aim is to differentiate threeudkinds of engine cycles : absence of knock, increasing knock and heavy knock . The developped diagnostic approach deals withudfuzzy pattern recognition . After describing the diagnostic architecture line modules and their functions, experimental results fromuddata acquired from an engine test bench are reported . The method, experimented on a learning set, leads to several diagnosesudthat cooperate .
机译:对于火花点火发动机制造商来说,爆震是一个众所周知的问题。爆震检测有助于在提高发动机效率,燃油消耗和有关废气排放法规的当前要求之间取得最佳折衷。 ud通常控制点火正时,以便即使燃油质量发生变化也不会发生爆震。爆震检测方法的优点是可以在爆震条件的近距离内工作,但要避免这种情况的发生。我们研究的目的在于从加速度计提供的块振动信号中突出几个爆震强度。我们的目标是区分三种发动机循环:无爆震,增加爆震和重爆震。发展起来的诊断方法处理模糊模式识别。在描述了诊断架构生产线模块及其功能之后,报告了从发动机测试台获得的 uddata的实验结果。该方法在学习集上进行了实验,导致一些可以配合使用的诊断。

著录项

  • 作者

    THOMAS (J.-H.);

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号