首页> 外文OA文献 >Multi-color fluorescent DNA analysis in an integrated optofluidic lab-on-a-chip
【2h】

Multi-color fluorescent DNA analysis in an integrated optofluidic lab-on-a-chip

机译:在一个集成的光流控芯片实验室中进行多色荧光DNa分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sorting and sizing of DNA molecules within the human genome project has enabled the genetic mapping of various illnesses. By employing tiny lab-on-a-chip devices for such DNA analysis, integrated DNA sequencing and genetic diagnostics have become feasible. However, such diagnostic chips typically lack integrated sensing capability. We address this issue by combining microfluidic capillary electrophoresis with laser-induced fluorescence detection resulting in optofluidic integration towards an on-chip bio-analysis tool [1,2]. We achieve a spatial separation resolution of 12 μm, which can enable a 20-fold enhancement in electropherogram peak resolution, leading to plate numbers exceeding one million. We demonstrate a high sizing/calibration accuracy of 99% [3], and ultrasensitive fluorescence detection (limit of detection = 65 femtomolar, corresponding to merely 2-3 molecules in the excitation/detection volume) of diagnostically relevant double-stranded DNA molecules by integrated-waveguide laser excitation. Subsequently, we introduce a principle of parallel optical processing to this optofluidic lab-on-a-chip. Different sets of exclusively color-labeled DNA fragments – otherwise rendered indistinguishable by their spatio-temporal coincidence – are traced back to their origin by modulation-frequency-encoded multi-wavelength laser excitation, fluorescence detection with a color-blind photomultiplier, and Fourier-analysis decoding. As a proof of principle, fragments from independent human genomic segments, associated with genetic predispositions to breast cancer and anemia, are extracted by multiplex ligation-dependent probe amplification, and simultaneously analyzed. Such multiple yet unambiguous optical identification of biomolecules opens new horizons for “enlightened” lab-on-a-chip devices.
机译:在人类基因组计划中对DNA分子进行分类和确定大小可以对各种疾病进行遗传定位。通过使用微型芯片实验室设备进行此类DNA分析,集成的DNA测序和遗传诊断已变得可行。然而,这种诊断芯片通常缺乏集成的感测能力。我们通过将微流体毛细管电泳与激光诱导的荧光检测相结合来解决这个问题,从而将光流体集成到芯片上的生物分析工具[1,2]。我们实现了12μm的空间分离分辨率,这可以使电泳图谱峰分辨率提高20倍,从而导致板数超过一百万。我们证明了99%的高尺寸/校准精度[3],并且通过诊断相关的双链DNA分子的超灵敏荧光检测(检测极限= 65飞摩尔,仅对应于激发/检测体积中的2-3个分子)。集成波导激光激发。随后,我们将并行光学处理的原理引入该光流体芯片实验室。分别由不同颜色标记的DNA片段的不同集合(否则会因其时空重合而无法区分)通过调制频率编码的多波长激光激发,色盲光电倍增管的荧光检测和Fourier-分析解码。作为原理的证明,通过多重连接依赖性探针扩增来提取与乳腺癌和贫血的遗传易感性相关的独立人类基因组片段的片段,并同时进行分析。这种对生物分子的多重但明确的光学鉴定为“开明”的芯片实验室设备开辟了新的视野。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号