首页> 外文OA文献 >Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes
【2h】

Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes

机译:离散时间信号的自适应插值,可以建模为自回归过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive processes. The only restrictions are that the positions of the unknown samples should be known and that they should be embedded in a sufficiently large neighborhood of known samples. The estimates of the unknown samples are obtained by minimizing the sum of squares of the residual errors that involve estimates of the autoregressive parameters. A statistical analysis shows that, for a burst of lost samples, the expected quadratic interpolation error per sample converges to the signal variance when the burst length tends to infinity. The method is in fact the first step of an iterative algorithm, in which in each iteration step the current estimates of the missing samples are used to compute the new estimates. Furthermore, the feasibility of implementation in hardware for real-time use is established. The method has been tested on artificially generated auto-regressive processes as well as on digitized music and speech signals.
机译:本文提出了一种用于恢复离散时间信号中丢失样本值的自适应算法,该算法可以通过自回归过程进行局部描述。唯一的限制是,未知样品的位置应该是已知的,并且应该将它们嵌入足够大的已知样品邻域中。通过最小化涉及自回归参数估计的残留误差的平方和来获得未知样本的估计。统计分析表明,对于丢失样本的突发,当突发长度趋于无穷大时,每个样本的预期二次插值误差会收敛到信号方差。该方法实际上是迭代算法的第一步,其中在每个迭代步骤中,将丢失样本的当前估计值用于计算新估计值。此外,建立了在硬件中实现实时使用的可行性。该方法已经过人工生成的自动回归过程以及数字化音乐和语音信号的测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号