首页> 美国政府科技报告 >Autoregressive Modelling for Speech Coding: Estimation, Interpolation andQuantisation (Autoregressieve Modellering voor Spraakcodering: Schatten, Interpoleren en Kwantiseren)
【24h】

Autoregressive Modelling for Speech Coding: Estimation, Interpolation andQuantisation (Autoregressieve Modellering voor Spraakcodering: Schatten, Interpoleren en Kwantiseren)

机译:用于语音编码的自回归建模:估计,插值和量化(autoregressieve modellering voor spraakcodering:schatten,Interpoleren en Kwantiseren)

获取原文

摘要

Linear Prediction has been applied very successfully in speech coding and manycoders are based on this technique. These coders use an autoregressive model to describe the speech signal. The reconstructed speech is synthesised by feeding a suitable excitation through the autoregressive synthesis filter. Coders differ mainly in the way the excitation through the autoregressive synthesis filter. Coders differ mainly in the way the excitation is selected and coded. Perhaps the main reason for the success of Linear Prediction is that the autoregressive model combines good prediction capabilities in the time domain with an accurate description of the speech spectral envelope. These properties can be used for efficient coding of the model and its excitations and for techniques such as interpolation, error weighting and postfiltering. This thesis focuses on different aspects of the application of autoregressive models for speech coding, such as estimation, interpolation and quantisation. (Copyright (C) 1996 J. S. Erkelens.)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号