首页> 外文OA文献 >Data Provenance Inference in Logic Programming: Reducing Effort of Instance-driven Debugging
【2h】

Data Provenance Inference in Logic Programming: Reducing Effort of Instance-driven Debugging

机译:逻辑编程中的数据源推理:减少实例驱动调试的工作量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data provenance allows scientists in different domains validating their models and algorithms to find out anomalies and unexpected behaviors. In previous works, we described on-the-fly interpretation of (Python) scripts to build workflow provenance graph automatically and then infer fine-grained provenance information based on the workflow provenance graph and the availability of data. To broaden the scope of our approach and demonstrate its viability, in this paper we extend it beyond procedural languages, to be used for purely declarative languages such as logic programming under the stable model semantics. For experiments and validation, we use the Answer Set Programming solver oClingo, which makes it possible to formulate and solve stream reasoning problems in a purely declarative fashion. We demonstrate how the benefits of the provenance inference over the explicit provenance still holds in a declarative setting, and we briefly discuss the potential impact for declarative programming, in particular for instance-driven debugging of the model in declarative problem solving.
机译:数据来源可让不同领域的科学家验证他们的模型和算法,以发现异常和意外行为。在以前的工作中,我们描述了对(Python)脚本的即时解释,以自动构建工作流出处图,然后根据工作流出处图和数据可用性推断出细粒度的出处信息。为了拓宽我们的方法的范围并证明其可行性,在本文中,我们将其扩展到过程语言之外,以用于纯声明性语言,例如在稳定模型语义下的逻辑编程。为了进行实验和验证,我们使用“答案集编程”求解器oClingo,这使以纯粹声明性的方式制定和解决流推理问题成为可能。我们演示了在声明式环境中起源推理相对于显式出处的好处如何仍然存在,并且我们简要讨论了声明式编程的潜在影响,尤其是声明式问题解决中模型的实例驱动调试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号