首页> 外文OA文献 >Highly Accurate Random Phase Approximation Methods With Linear Time Complexity
【2h】

Highly Accurate Random Phase Approximation Methods With Linear Time Complexity

机译:具有线性时间复杂度的高精度随机相位逼近方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the key challenges of electronic structure theory is to find formulations to compute electronic ground-state energies with high accuracy while being applicable to a wide range of chemical problems. For systems beyond the few atom scale often computations achieving higher accuracies than the so called double-hybrid density functional approximations become prohibitively expensive.udHere, the random phase approximation, which is known to yield such higher accuracy results has been developed from a theory applicable only to molecules on the tens of atoms scale into a highly accurate and widely applicable theory. To this end, a mathematical understanding has been developed that, without changing the computational complexity, allows to eliminate the error introduced by the resolution-of-the-identity approximation which had been introduced in the previous formulation.udFurthermore, in this work a new formulation of the random phase approximation for molecules has been presented which achieves linear-scaling of compute time with molecular size - thereby expanding the realm of molecules that can be treated on this level of theory to up to a thousand atoms on a simple desktop computer. udFinally, the theory has been matured to allow for use of even extensive basis sets without drastically increasing runtimes.udOverall, the presented theory is at least as accurate and even faster than the original formulation for all molecules for which compute time is significant and opens new possibilities for the highly accurate description of large quantum chemical systems.
机译:电子结构理论的主要挑战之一是找到公式,以高精度计算电子基态能量,同时适用于广泛的化学问题。对于超出几个原子尺度的系统,经常要获得比所谓的双混合密度泛函逼近更高的精度,这真是太昂贵了。 ud在此,从可应用的理论中发展出了随机相位逼近,众所周知它可以产生更高的精度。只有将数十个原子上的分子尺度转换为高度准确且广泛适用的理论。为此,已经发展出一种数学上的理解,即在不改变计算复杂度的情况下,可以消除由先前公式中引入的身份解析近似引起的误差。 ud此外,在这项工作中提出了一种针对分子的随机相近似的新公式,该公式实现了计算时间与分子大小的线性缩放-从而可以将在这种理论水平上可以处理的分子范围扩展到一台简单的台式计算机上的多达一千个原子。最后,该理论已经成熟,可以在不大幅增加运行时间的情况下使用甚至广泛的基础集。 ud总体而言,对于计算时间很长且对所有分子都非常重要的所有分子,本文提出的理论至少与原始公式一样准确甚至更快。为大型量子化学系统的高精度描述开辟了新的可能性。

著录项

  • 作者

    Schurkus Henry F.;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号