首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Numerical approximations of the Navier-Stokes equation coupled with volume-conserved multi-phase-field vesicles system: Fully-decoupled, linear, unconditionally energy stable and second-order time-accurate numerical scheme
【24h】

Numerical approximations of the Navier-Stokes equation coupled with volume-conserved multi-phase-field vesicles system: Fully-decoupled, linear, unconditionally energy stable and second-order time-accurate numerical scheme

机译:耦合音量保守的多相场囊泡系统的Navier-Stokes方程的数值近似:完全解耦,线性,无条件能量稳定和二阶时间准确的数值方案

获取原文
获取原文并翻译 | 示例

摘要

We consider the numerical approximation of the flow-coupled multi-phase-field elastic bending energy model of lipid vesicles. Based on the classical model with approximate volume conservation only, this paper first establishes a new model that can accurately conserve volume by adding some nonlocal terms to the model equation. Then, for the system coupled with the incompressible flow, we propose a novel numerical method to construct an effective scheme that is fully-decoupled, linear, unconditionally energy stable, and second-order time-accurate. The key idea to achieve the full decoupling nature is to introduce an ordinary differential equation to deal with the nonlinear coupling term that satisfies the so-called "zero-energy-contribution" property. Thus, in actual calculations, this scheme only needs to solve several independent linear equations with constant coefficients at each time step. We strictly prove the solvability and unconditional energy stability, and perform numerical simulations in 2D and 3D to verify the accuracy and stability of the scheme numerically. (C) 2020 Elsevier B.V. All rights reserved.
机译:我们考虑脂质囊泡的流动耦合多相面弹性弯曲能量模型的数值近似。仅基于具有近似音量保护的古典模型,本文首先建立了一种通过向模型方程添加一些非本质术语来准确地节省体积的新模型。然后,对于具有不可压缩的流量的系统,我们提出了一种新颖的数控方法来构建具有完全分离,线性,无条件能量稳定和二阶时间准确的有效方案。实现完整去耦性质的关键思想是引入常规方程来处理满足所谓的“零能量贡献”特性的非线性耦合项。因此,在实际计算中,该方案仅需要在每个时间步骤求解具有恒定系数的几个独立的线性方程。我们严格证明了可解性和无条件能量稳定性,并在2D和3D中执行数值模拟,以验证方案的数值验证方案的准确性和稳定性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号